
Status Server Detailed Design

Tom Vermeulen

28 May 2002

This document is available on the Web at: http://software.cfht.hawaii.edu/sserver/detaildesign/

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Contents

1 Introduction 8

1.1 Purpose 8

1.2 Scope 8

1.3 References 8

2 Development and Execution Environment 8

2.1 Hardware 8

2.2 Software 9

3 Status Server System Overview 9

3.1 Client, Server Communication 9

3.1.1 Overview 9

3.1.2 Directory Structure 10

3.1.3 Directory and Data Object Information 11

3.1.4 Message Flows between Client and Server 12

4 Command Protocol 15

4.1 Client Command Syntax 16

4.1.1 Register Client with the Status Server (OPTIONAL) 18

4.1.2 Disconnect from the Status Server 18

4.1.3 Create an object or register the intent to modify an object or directory 19

4.1.4 Update an object 19

4.1.5 Retrieve an object or retrieve the status of an object .. 20

4.1.6 Initiate a monitor on a directory or data object 20

4.1.7 Remove a monitor from a directory or data object 21

4.1.8 Retrieve monitor updates 21

4.1.9 Remove an object 22

4.1.10 Get the current directory path 23

4.1.11 Change the current directory 23

4.1.12 Create directory or register intent to remove a directory . 23

4.1.13 Remove a directory 24

4.1.14 Retrieve the contents of a directory 24

4.1.15 Initiate a trace 25

4.1.16 Stop a trace 26

4.1.17 Serialize Status Server data to a file 26

4.1.18 Shutdown the Status Server 26

4.1.19 Protocol Error 26

Version 1.1 Page 2

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5 Client C API 27

5.1 API Reference 27

5.1.1 Access the Status Server 27

5.1.2 Disconnect from the Status Server 27

5.1.3 Create an object or register the intent to modify an object . 28

5.1.4 Update an object 28

5.1.5 Retrieve an object 28

5.1.6 Check for the existence and status of an object 29

5.1.7 Initiate a monitor on an object 29

5.1.8 Remove a monitor from an object 30

5.1.9 Retrieve monitor updates 30

5.1.10 Remove an object 30

5.1.11 Get the current directory path 30

5.1.12 Change the current directory 30

5.1.13 Create directory or register intent to remove a directory . 30

5.1.14 Remove a directory 31

5.1.15 Retrieve the contents of a directory 31

5.1.16 Initiate a trace 31

5.1.17 Stop a trace 31

5.1.18 Serialize Status Server data to a file 31

5.1.19 Shutdown the Status Server 32

6 Software Design 32

6.1 Status Server Data Structures 32

6.1.1 Client Connection Data (clientinfo t) . 33

6.1.2 Directory and Object Data (nodeinfo t) . 33

6.1.3 Monitoring Data (moninfo t) . 35

6.2 Status Server Software Components 37

6.2.1 Message Handling Services 37

6.2.1.1 Register Client with the Status Server 39

6.2.1.2 Disconnect from the Status Server 39

6.2.1.3 Create an object or register the intent to modify an object 39

6.2.1.4 Update an object 40

6.2.1.5 Retrieve an object 41

6.2.1.6 Initiate a monitor on an object 41

6.2.1.7 Remove a monitor from an object 42

6.2.1.8 Retrieve monitor updates 42

Version 1.1 Page 3

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.1.9 Remove an object 43

6.2.1.10 Get the current directory path 44

6.2.1.11 Change the current directory 44

6.2.1.12 Create directory or register intent to remove a directory 44

6.2.1.13 Remove a directory 45

6.2.1.14 Retrieve the contents of a directory 46

6.2.1.15 Initiate a trace 47

6.2.1.16 Stop a trace 47

6.2.1.17 Serialize Status Server data to a file 47

6.2.1.18 Shutdown the Status Server 47

6.2.2 Client Services 47

6.2.2.1 Create a client object 47

6.2.2.2 Update a client object 47

6.2.2.3 Check if a mailbox message was sent to a client 48

6.2.2.4 Check if monitor information must be sent to the client 48

6.2.2.5 Set flag indicating monitoring is in progress 48

6.2.2.6 Set flag indicating a directory listing is in progress . 48

6.2.2.7 Check if directory listing information must be sentto the client 49

6.2.2.8 Add a directory object or data object to the client touch list 49

6.2.2.9 Check whether a data object or directory object is part of the client touch list 49

6.2.2.10 Add a monitoring object to the client monitor list .. 49

6.2.2.11 Remove a monitoring object from the client monitorlist 50

6.2.2.12 Add a monitoring object to the client ls list 50

6.2.2.13 Remove a monitoring object from the client monitorlist 50

6.2.2.14 Set the mailbox flag indicating that monitors are available 50

6.2.2.15 Get the current path associated with a client 50

6.2.2.16 Change the current path associated with a client . .. 50

6.2.2.17 Remove a client and all of its relevant data 51

6.2.3 Data Services 51

6.2.3.1 Create a directory or register the intent to remove adirectory 51

6.2.3.2 Retrieve a directory 51

6.2.3.3 Remove a directory 52

6.2.3.4 Add a data object to a directory object 52

6.2.3.5 Remove a data object from a directory 52

6.2.3.6 Retrieve a data object 52

6.2.3.7 Set a directory comment 53

Version 1.1 Page 4

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.8 Serialize Status Server contents to a file 53

6.2.3.9 Populate a serialized touch string for a directory or data object 53

6.2.3.10 Create a data object 54

6.2.3.11 Add a monitor to a directory or data object 54

6.2.3.12 Remove a monitor from a directory or data object 54

6.2.3.13 Retrieve a monitor from a directory or data object .. 54

6.2.3.14 Inform monitoring clients of object changes 54

6.2.3.15 Setup a monitor listing for a directory 55

6.2.3.16 Refresh object state 55

6.2.3.17 Check whether a directory or data object is valid . .. 55

6.2.3.18 Check whether a data object does not exist 55

6.2.3.19 Retrieve the value of a directory or data object 55

6.2.3.20 Set the value of a directory or data object 56

6.2.3.21 Set the lifetime of a data object 56

6.2.3.22 Get the lifetime of a data object 56

6.2.3.23 Get the comment associated with a directory or dataobject 56

6.2.3.24 Set the full path of a directory or data object 56

6.2.3.25 Get the full path of a directory or data object 57

6.2.3.26 Remove a node 57

6.2.4 Monitor Services 57

6.2.4.1 Create a monitor object 57

6.2.4.2 Update the deadband threshold for a monitor object 57

6.2.4.3 Record the object value which has been sent to a client 57

6.2.4.4 Check whether a client must be notified of a monitoring change 58

6.2.4.5 Remove a monitoring object 58

6.2.5 Time Dependent Services 58

6.2.5.1 Add a data object to the list of time dependent objects 58

6.2.5.2 Remove a time dependent object from the list of time dependent objects 58

6.2.5.3 Service time dependent objects 59

6.2.5.4 Reposition a time dependent object 59

6.2.5.5 Retrieve the minimum time to next update 59

6.2.6 Utility Functions 59

6.2.6.1 Memory Allocation Wrapper Functions 59

6.2.6.2 Linked List Functions 60

6.2.6.3 Argument Parsing and Validation Functions 60

6.2.6.4 Logging Functions 60

Version 1.1 Page 5

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

7 Design Analysis 60

7.1 Out-of-Memory Handling in the Status Server 60

7.1.1 Alternatives for Handling Out-of-Memory Condition .. 60

7.1.2 Preferred Approach to Handling an Out-of-Memory Condition 62

8 Document Change Log 62

Version 1.1 Page 6

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

List of Figures

1 Status Server High-Level System Diagram 9

2 Characters Which must be URL Encoded 10

3 Status Server Hierarchical Name-Value Pair Representation . 11

4 Client Connection Message Flow 12

5 Client Disconnect Message Flow 13

6 Client Command Request Message Flow 13

7 Client Shutdown Request Message Flow 14

8 Out-of-Sequence Client Request Message Flow 14

9 Out-of-Sequence Server Response Message Flow 14

10 Directory Listing Request Message Flow 15

11 Typical Monitoring Message Flow 16

12 Monitoring Message Flow with Midstream Update 17

13 Status Server Data Structures 32

14 Description of Fields within Client Data Structure 34

15 Description of Fields within the Directory and Data Object Structure 36

16 Description of Fields within Monitoring Data Structure .. 37

17 Status Server Software Components 37

18 Status Server Memory Allocation Failure Error Message Flow . 61

19 Status Server Memory Allocation Failure Retry Message Flow . 61

20 Status Server Memory Allocation Failure Retry and Exit Message Flow 62

Version 1.1 Page 7

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

1 Introduction

1.1 Purpose

The purpose of this document is to define the detailed design specification for the Status Server. The detailed design
specification documented here is based on a set of previouslydefined requirements and functional specification. The
implementation of the Status Server will be based on the design outlined in this document. While the Client API is
mentioned in some detail, this document does not adequatelycover the detailed design of the Client API. Either this
document will be amended to fully cover the Client API, or thedetailed design of the Client API will be covered in a
separate document.

The first draft of this document must be reviewed by the members of the software group and will be amended following
review. The implementation stage will not start until this review has been completed and the document updated.

1.2 Scope

Unless otherwise noted, the detailed design specificationsidentified in this document are intended to be implemented
in the first release of the Status Server. However, release requirements may dictate the priority and staging of func-
tionality.

1.3 References

The design of the Status Server is based on a previously established set of requirements and functional specification.
In addition, the Status Server will utilize a previously written CFHT Socket Library, which is often referred to as
“sockio” in this document. More details regarding the requirements, functional specification, and sockio library can
be found at the following locations on the CFHT intranet.� Status Server Requirements Document - http://software.cfht.hawaii.edu/sserver/requirements/� Status Server Functional Specification - http://software.cfht.hawaii.edu/sserver/funcspec/� CFHT Socket I/O Library - http://software.cfht.hawaii.edu/sockio/

2 Development and Execution Environment

Both the Status Server and Client API library will be developed using the C language and conform to the established
CFHT coding standard. The software will be compiled for the three major UNIX architectures in use at CFHT; HP-UX,
Sun Solaris, and Linux. The Client API library will be available on the three previously mentioned architectures.

2.1 Hardware

The amount of processing power required to run the Status Server is largely dependent on the load placed upon it by its
client connections. Based on the previously defined requirement that clients not update data at frequencies greater than
1 Hz, a moderately configured system should be more than sufficient to run the Status Server. Benchmarking must be
performed following implementation to determine what the typical memory and CPU utilization for the Status Server
will be.

The machine running the Status Server must have a 100Mbps Ethernet connection and be accessible by other machines
on the CFHT network.

Version 1.1 Page 8

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

2.2 Software

Clients wishing to use the Client C-API must be running either HP-UX, Sun Solaris, VxWorks, or Linux. The C-API
library will be compiled and linked as a static library target.

3 Status Server System Overview

A visual representation of the high-level components involved in the Status Server System can be found in figure 2.
This document focuses on the Status Server and Client C API components and the message protocol used between
client and server. It is possible for users to connect to the Status Server via a telnet session, using the same message
protocol used by the client C API.

C
lien

t C
 A

P
I

so
ckio

 lib
rary

C
lien

t P
ro

g
ram

Telnet Client

so
ckio

 lib
rary

S
tatu

s S
erver

Status Server

Client using the
C API

Figure 1: Status Server High-Level System Diagram

3.1 Client, Server Communication

3.1.1 Overview

The Status Server will listen over a socket interface to client requests. The server will service each request and send
back an associated response. With the exception of a disconnect request, each client request will receive a response
from the Status Server. In most cases, the client will receive a single line response to a request. The exception to
the single response model is the case where a client has requested monitoring updates or the client has requested the
contents of a directory. Multiple line response messages will always be terminated with an end-of-transaction (EOT)
return message. The client must not send any new commands until it has fully processed the current command. If, for
some reason, the server receives a new command request from aclient before it has sent the client the last response, it
may inform the client that a protocol error has occurred. At this point, the Status Server will expect the client to close
the connection. If, however, the client sends another command, the Status Server will close the client connection.

In the case of monitored objects, it is possible for a client to receive an unsolicited message across the interface. This
message is triggered the first time a client-monitored object is updated beyond the “deadband” restriction and the
client has not already been informed of a monitor update. Once a client is informed that it has monitored information

Version 1.1 Page 9

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

to retrieve, it must initiate a “poll” request to retrieve the information. This is an event-driven model which triggers
the client to always initiate a retrieval of monitor information. This document does not address the handshaking
implementation concerning how a client using the Client APIwill be notified that monitors are available and the
triggering mechanism to retrieve them. This will be defined in the detailed design of the Client API.

The Status Server will utilize the sockio library to handle the low-level socket details. The sockio library uses a single-
threaded non-blocking approach to handling client connections. The interaction between the sockio library functions
and the Status Server will be discussed in more detail in the software design section of this document. In addition, you
can review the the CFHT Socket I/O Library document for more information regarding the design of this library.

Both the Status Server and sockio library are designed in such a way that any data sent across the socket can be
gracefully handled. This includes receiving binary data orunusually long messages which may or may not be properly
terminated with a newline character. If a client attempts toconnect from outside the CFHT network, or a client violates
the established message protocol, whenever possible its connection will be terminated.

Each request received by the Status Server will be checked tomake sure it is both a valid command and does not
contain any invalid characters. The Status Server will onlyprocess requests which contain URL encoded 7 bit ASCII
printable characters terminated with a newline (CR/LF or LF). If a non-conforming request is received, it will be
rejected with a “syntax error” response. In the Status Server encoding scheme, only printable characters with the
exception of some special characters can be sent unencoded.Figure 2 shows the characters which must be explicitly
encoded prior to being received by the Status Server.

Character ASCII Value (Hex) Reason for Encoding
Percent Sign (’%’) 25 Used to URL encode/escape other characters, so it should

itself also be encoded.
Single Quote (”’) 27 Used as a wrapper around distinct fields of data. The

parser will treat data within a single quotes as one field.
Double Quote (’”’) 22 Used as a wrapper around distinct fields of data. The

parser will treat data within double quotes as one field.
Control Characters < 20 Must be encoded to prevent unpredictable behavior.
Extended Characters > 7E Must be encoded to prevent display issues via an interac-

tive telnet session.

Figure 2: Characters Which must be URL Encoded

URL encoding of a character consists of a “%” symbol, followed by the two-digit hexadecimal representation (case-
insensitive) of the character value. For example, a tab character would be encoded as “%09”.

Since the Status Server does not perform any encoding or decoding functionality, functions will be available in the
Client API to perform encoding and decoding of Strings from an 8 bit character format to URL encoded format.
Clients which decide to access the Status Server via a telnetsession or custom socket implementation, must be aware
of the URL encoding requirements of the Status Server and perform the necessary encoding.

It is important to note that any encoding schemes used to encapsulate data are completely hidden from clients using
the Client API. A client using the Client API does not need to call any encoding or decoding functions.

All string data stored and manipulated within the Status Server is 7 bit only.

3.1.2 Directory Structure

Objects within the Status Server are grouped together in a tree-like fashion patterned after the UNIX file system. As a
result, it will be possible for a client to traverse and manipulate objects within the Status Server much like traversing
a directory tree and manipulating files in a file system. Objects within the Status Server can be referenced either via
a fully qualified directory path/object name combination, or a relative path-name combination. In order to manage
relative path references, a current path will be maintainedfor each client connection. Rules to determine whether
a path-name combination is expressed as an absolute path or relative path will be applied the same way they are in

Version 1.1 Page 10

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

a UNIX file system. A visual example of the type of structure used to hold Status Server information is shown in
figure 3.

Status Server database

#
Format is /path/and/varname = # Description in comment#
Formatting of <sample value> indicates "native" type for this field.
This is handled internally by the routine that serializes the database.
#
TRUE/FALSE - Booleans will have *un-quoted* TRUE or FALSE as the value.
"string" - Strings always saved with " as the first char in value field.
10. - Float values will always show a decimal point (even if .0)
15 - Numeric values without a decimal indicate integers.
#
Top-level "directories":
#
/i/ with a subdirectory for each instrument (often same names as handlers)
/t/ with subdirectories for each telescope subsystem
/p/ for plant environment, weather, data-logger variables
/f/ has subdirectories for each exposure where FITS headers are accumulated
#
/i/ # Instruments
/i/megacam/ # Megacam agent stuff
/i/megacam/etime = 10. # Current exposure time
/i/megacam/etype = "BIAS" # Current exposure type
/i/megacam/filter = 0 # Current filter position
#
/i/cfh12k/ are all generated by 12kcom(detcom) and used to be in .,12kcom.par
#
/i/cfh12k/status = "Idling" # Camera status for GUI
/i/cfh12k/raster = "FULL" # Current raster setting
/i/cfh12k/etime = 10. # Current exposure time
/i/cfh12k/etype = "FLAT" # Current exposure type
/i/cfh12k/filter = 0 # Current filter position
/i/cfh12k/filter[0] = "R" # Desc. of filter in slot 0
/i/cfh12k/filter[1] = "V" # Desc. of filter in slot 1
/i/cfh12k/filter[2] = "B" # Desc. of filter in slot 2
/i/cfh12k/filter[3] = "I" # Desc. of filter in slot 3
/i/cfh12k/observer = "Galileo" # Current OBSERVER header
/i/cfh12k/object = "TF dawn" # Current OBJECT header
/i/cfh12k/comment = "Twilight flats" # Current CMMTOBS header
/i/cfh12k/piname = "Mellier" # Current PINAME header
/i/cfh12k/runid = "99IIF142" # Current RUNID header

Figure 3: Status Server Hierarchical Name-Value Pair Representation

3.1.3 Directory and Data Object Information

Each directory and data object in the Status Server consistsof a series of attributes. These attributes include:

1. Name - Within the Status Server the object name, in combination with its associated directory path location,
must be unique. The name and directory path must consist of a string of 7 bit ASCII printable characters. In
addition, the following series of characters will not be permitted in a directory path or object name (“, ’, =,
space).

2. Value - The value stored with the object. The value of an object stored in the Status Server will always be
enclosed within double quotes if it is valid. If the value of the object is not valid, it will not be enclosed within
double quotes. For example, the following values would be considered valid: “data”, “0.0”, or “sample data”.
If a value is not enclosed within double quotes, it must always be one of the following values.

Version 1.1 Page 11

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

(a) NONEXISTENT - If a request is received by the Status Server to initiate a monitor on a data object
which does exist, a data object will be created, and its valuewill be set to NONEXISTENT. For a client
perspective, any request made to update or retrieve the value of this object will fail with an indication that
the object does not exist, until the object is created with a “touch” command request (see section 4.1.3).

(b) UNDEFINED - If a client has created an object, but has not assigned a value. This would be the initial
value of an object following a “touch” command request (see section 4.1.3).

(c) EXPIRED - If the object has not been updated within a “lifetime” length of time since its last update.

3. Comment - An entry describing what the object is.

4. Lifetime - Indicates the maximum amount of time this object can be considered valid. As an example, the
current seeing may only be defined to be valid for an hour.

If a data object has a value of NONEXISTENT, it will be completely removed and deallocated whenever its use counts
are zero. This means that a data object can not be completely removed if a client has performed a touch, monitor, or
directory listing request on the object. This is a requirement to enforce pointer integrity within the Status Server.

More details regarding the attributes associated with a directory or data object can be found in the software design
section (see 6.1.2).

3.1.4 Message Flows between Client and Server

In order to understand the communication between client andserver, a set of message flows is included to illustrate
normal operational flows and error conditions. In each flow, solid lines indicate Client API or Status Server initiated
messages while dotted lines indicate low-level socket messages.� Client Connection - Figure 4 illustrates the normal sequence of messages used when a client connects to the

server. In the case of a Client API connection, the Process ID(PID) and Program Name will be sent to the Status
Server in a message following the initial connection. The Client API should always receive a positive response
to this message. If not, this will be considered an internal error and the Client API will log debug information
and exit.

Status

Server
Client

If IP address is a valid CFHT address and

a file descriptor is available, connect should

be successful

Check command syntax. If ok, send

a positive response.

Try to Establish Socket Connection

Connection Successful

Client

API

Send PID and Program Name

PASS response

Figure 4: Client Connection Message Flow

Version 1.1 Page 12

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design� Client Disconnection- Figure 5 illustrates the normal sequence of messages when atelnet client disconnects
from the server. It assumes that the client sent a message to disconnect from the server. It is also possible for
the client to close its end of the socket connection in order to trigger a disconnect. The Client API will close
the socket connection instead of sending a message to the Status Server. It will always be safe to allow a client
program using the Client API to exit without explicitly triggering an ssLogoff() function call. Once the program
exits, the socket should automatically be closed.

Status

Server
Client

Disconnect Request Message

Clean up client

resourcesEOF

Figure 5: Client Disconnect Message Flow� Command Request- Figure 6 illustrates the normal message sequence when a client sends a request. This will
be the standard request-response flow for almost all the commands with the exception of the “getdir”, “poll”,
“logoff”, and “shutdown” commands. The response from the Status Server will indicate whether the command
was processed successfully and may contain data if the response is valid. If the command failed, the response
will indicate the reason for the failure. It is possible for the client to receive a mailbox message indicating that
objects monitored by the client have changed prior to receiving the command response. The Client API must
handle this situation properly.

Status

Server
Client

Request

Response [DATA]

Figure 6: Client Command Request Message Flow� Server Shutdown Request- Figure 7 illustrates the message sequence when a client requests a shutdown of
the Status Server. Once the Status Server has saved the directory structure to disk, it will clean up its internal
resources and exit. This process will cause each client connected to the Status Server to receive an indication
that its socket connection to the Status Server has been closed by the server.� Client Out-of-Sequence Request- Figure 8 illustrates a sample message sequence if a client initiates an out-
of-sequence message. The client must always wait for the response to a previous message before sending a new
message. For clients using the Client API, the API will take care of waiting before a new message is sent. If
a client violates this protocol, the server will send a message to the client indicating that a protocol violation
occurred. The client should then close the socket connection. If the client does not close the socket connection,
the Status Server will close the client connection upon receiving another request.� Server Out-of-Sequence Response- Figure 9 illustrates a sample message sequence if a client receives a
response from the Status Server which it believes is out-of-sequence. On the client side, this would be considered
a protocol violation by the Status Server. If the Client API encounters this situation, it will send a “protocol
error” message to the Status Server. The Status Server will respond by logging error information to the CFHT
log and closing the client connection. The Client API must beable to handle a “mailbox” message at almost any

Version 1.1 Page 13

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Status

Server
Client Client

Shutdown Request

Serialize directory contents

Perform an exit()

Clean up internal resources

EOF

EOF

Figure 7: Client Shutdown Request Message Flow

Status

Server
Client

Clean up client

resources

Request

Request

Protocol Error Response

EOF

Figure 8: Out-of-Sequence Client Request Message Flow

time, so this will not be considered a protocol violation. The exception is if the Server sends multiple “mailbox”
messages before the client sends a “poll” request.

Status

Server
Client

Clean up server

connection

resources

Request

Response

Response

EOF

Protocol Error Message

Clean up client

resources

Figure 9: Out-of-Sequence Server Response Message Flow� Directory Listing Request - Figure 10 illustrates the message sequence when a client sends a valid directory
listing request. The server will send the directory header followed by the set of directories and objects. Once
all the directory contents have been sent, the Status Serverwill send an end-of-transaction (EOT) message.

Version 1.1 Page 14

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

If the directory is empty, the directory header will be sent followed by an immediate EOT message. If the
client requests a directory which does not exist, or if the command syntax is invalid, the Status Server will
send a descriptive error message instead of sending the directory header. The Status Server will not accept any
additional requests from the client until after the EOT message has been sent. If this situation occurs, and is
detected by the Status Server, it will send a protocol error message to the client.

Status

Server
Client

Status

Server
Client

Directory Listing Request

Directory Header

Directory Contents

Directory Contents

Directory Contents

. .. .

EOT Message

CASE 1: Populated Directory

CASE 2: Empty Directory

Directory Listing Request

EOT Message

Directory Header

Figure 10: Directory Listing Request Message Flow� Complete Monitoring Flow - Figure 11 illustrates the complete set of messages exchanged in a typical moni-
toring flow. Once the Status Server receives the monitor retrieval request, it will reset its flag indicating that a
mailbox has previously been sent to the client. As a result, subsequent changes to client monitored objects may
trigger a new mailbox message to be sent to the client. An example of this situation is illustrated in figure 12.
It is possible that the latest monitor update will be sent to the client in the current monitor retrieval already in
progress. If so, when the client initiates another monitor retrieval request the Status Server may immediately
return an EOT message. The Status Server will not accept any additional requests from the client until after the
end-of-transaction message has been sent. If this situation occurs, and is detected by the Status Server, it will
send a protocol error message to the client.

4 Command Protocol

The previous section illustrated the high-level message passing protocol between client and server. This section ad-
dresses the detailed syntax and format of the individual messages. As previously mentioned, each and every client
request, with the exception of the “logoff” and “shutdown” request, will receive a response. The server will only
handle single line URL encoded messages terminated with a newline (“nrnn” or “nn”). If a request is received, which
is not properly URL encoded, it will be rejected.

The first character of a Server Response indicates the type ofresponse sent by Status Server. There are five different
responses which the Status Server can send to the Client. Each of these responses is summarized in the following list:

Version 1.1 Page 15

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Client

Update Monitor

Client

Status

Server

Object Creation, Update or Removal

Object Creation, Update or Removal

Monitor Mailbox

Notification Message

Monitor Retrieval

Request

..

....

mailbox flag

Reset the

Name, Value Monitor Msg.

Name, Value Monitor Msg.

Check if client must be notified

of new monitor infomation. In

this example, the answer is YES.

EOT Message

Figure 11: Typical Monitoring Message Flow� Command Passed (’.’)- This response indicates that the request initiated by the Client was successfully pro-
cessed. The End of Transmission (EOT) message will always bepreceded by a ’.’.� Multiple Line Response (’+’) - This response indicates that it is part of a multiple line response message from
the Status Server and at least one more line will be sent by theStatus Server. The final message for a multi-line
response, such as a directory listing or retrieval of monitoring information, will always be “. EOT”.� Command Failed (’!’) - This response indicates that the Status Server was not ableto process the client request.
Details regarding the error will follow the explanation point. A sample error response is “! syntax error”.� Protocol Error (’?’) - This response indicates that the Status Server was not ableto process the client request
because a protocol error occurred. The client will receive the following message “? protocol error”.� Mailbox (’*’) - This response indicates that monitored information is available for retrieval. As mentioned
earlier, this response may be received at any time by the client. The full mailbox message will be sent as “*
MAIL”.

The first character encoding scheme is defined in such a way that it is not specific to any particular command request
sent across the interface from the client.

4.1 Client Command Syntax

This section contains the full set of commands, the requiredsyntax of each command, and the response a client should
expect to see. Optional arguments are included in square brackets “[]”. The command syntax is based on a “mixed
positional/keyword” system. In the case of mandatory arguments, they can be provided either as space delimited fields
or as a fully qualified argument. As an example, the “REGISTER” command can either be specified as REGISTER
124 “foo” or as REGISTER PID=124 NAME=”foo”. Optional arguments must always be specified in a fully qualified
format. Command and argument specifiers are case insensitive. For example, the “REGISTER” command could be

Version 1.1 Page 16

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Client

Update Monitor

Client

Status

Server

Object Creation, Update or Removal

Object Creation, Update or Removal

..

....

mailbox flag

Reset the

Name, Value Monitor Msg.

Check if client must be notified

of new monitor information. In

this example, the answer is YES.
Monitor Mailbox

Notification Message

Monitor Retrieval

Request

Check if client must be notified

of new monitor information. In

this example, the answer is YES.

Monitor Mailbox

Notification Message

Name, Value Monitor Msg.

Object Creation, Update or Removal

EOT Message

Figure 12: Monitoring Message Flow with Midstream Update

sent in either upper or lower case. For clarity purposes, command and argument specifiers are shown in upper case
with the arguments in lower case within this document.

If a string argument contains embedded spaces, it must be enclosed within either single or double quotes indicating
that the spaces are part of the argument string. Without the enclosing quotes, the parser will interpret the string as
separate arguments. Numeric parameters should not be enclosed within quotes. If the Status Server receives a numeric
parameter enclosed within quotes, it will strip off the quotes before converting the string to a number.

The Client API will always send commands with fully qualifiedarguments and place quotes around each string pa-
rameter sent to the Status Server.

It is important to note here that the value of an object storedin the Status Server will always be enclosed within double
quotes if it is valid. If the value of the object is not valid, it will not be enclosed within double quotes. For example, the
following values would be considered valid: “data”, “0.0”,or “sample data”. If a value is not enclosed within double
quotes, it must always be one of the following values: NONEXISTENT, UNDEFINED, or EXPIRED. As a result of
this encoding scheme, it is possible for the Status Server tosend back a response to the client which seems to indicate
that the command passed, but the Status Server value is actually invalid. It will be the responsibility of the Client API
to handle these as conditions and supply the appropriate error information available to the client.

All responses that return a data object name or directory name will always return this value in its fully-qualified
absolute path format. The exception is directory listings where the absolute path of the directory will be included as
part of the header line and each data object name within the directory will be expressed in relative path format.

In some cases, the response from the Status Server contains the command and in other cases it does not. Since a client
can only send one command request at a time, it is not necessary to encode the command request within the response.
Instead, the command responses have been set up in such a way that it could be ossible to set up a cacheing proxy

Version 1.1 Page 17

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

server to relay Status Server information. In order to enable this, wherever possible a command/value response is
returned with the object name and object value. A proxy server could store a local copy of the values sent to and from
the Status Server in order to reduce the load on the Status Server. There are no plans currently in place to deploy such
a server, but the message protocol has been implemented in such a way that this could be a possibility in the future.

It is possible for the Status Server to supply additional information following some of the documented command
responses. While the additional information may be ignoredby the Client API, it could be useful for interactive use.
For example, the Status Server may include the number of items returned for a directory listing request following the
end-of-transaction (EOT) message.

4.1.1 Register Client with the Status Server (OPTIONAL)

Once a socket connection is established between the Client and Status Server, additional details describing the client
can be sent to the Status Server. This registration message is optional, but will always be sent as part of the Client API
initialization. Typically, a user interacting with the Status Server via a telnet session will not use this command. The
message flow for this command can be found in figure 4.

REGISTER [PID=]pid [NAME=]client_name

Input parameters for the registration command are as follows:� pid - Process ID (PID) of the client process interacting with theStatus Server. This will be the PID of the
process invoking the Client C-API.� client name- Program name. This is the same as argv[0].

Response the client would expect to see:� . welcome clientname� ! syntax error

In the case of the Client C-API, receiving a syntax error should never occur, and would be considered an internal error.

4.1.2 Disconnect from the Status Server

The connection between client and Status Server will remainpersistent until the client chooses to disconnect, or the
network connection between client and server is broken. When using a telnet connection, it is sometimes easier to type
a short command than the CTRL-’]’ quit sequence. The Status Server will have a command available to enable a client
to terminate the connection. This command will cause the client to receive an EOF across the interface indicating that
the Status Server has closed the connection. The message flowfor this command can be found in figure 5.

QUIT

This command does not have any input parameters and will not generate a message response.

Version 1.1 Page 18

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

4.1.3 Create an object or register the intent to modify an object or directory

Prior to either updating or removing an object within the Status Server, the client must perform a “touch” on the object.
The touch enables a client to specify the intent to update or modify a value in the Status Server. The message flow for
this command can be found in figure 6.

TOUCH [NAME=]obj_name [COMMENT=obj_comment] [LIFETIME=obj_lifetime]

Input parameters for the registration command are as follows:� obj name- Name of the object. The object name can be specified either asa name containing the fully qualified
absolute directory path or as a name containing a relative directory path. Absolute references will be prefixed
by a leading ’/’. Relative path references may be prefixed with either a “./” or “../”. The object name may not
have a trailing ’/’ character, since this is used to indicatea directory.� obj comment(OPTIONAL) - A description of the object.� obj lifetime (OPTIONAL) - An integer number expressed in seconds, which identifies the amount of time the
object will be considered valid following a modification.

Response the client would expect to see:� . obj name TOUCHED (If the object did not previously exist, the value will be “UNDEFINED”)� ! syntax error

In the case of the Client C-API, receiving a syntax error should never occur and would be considered an internal error.

4.1.4 Update an object

Once a successful touch has been performed on an object, it ispossible for the client to initiate an update request. The
update request causes the value associated with the object to be modified. The message flow for this command can be
found in figure 6.

PUT [NAME=]obj_name [VALUE=]obj_value

Input parameters for the update command are as follows:� obj name- Name of the object. The object name can be specified either asa name containing the fully qualified
absolute directory path or as a name containing a relative directory path.� obj value - New value for the object.

The client will receive one of the following responses:� . obj name objvalue (The returned objvalue will always be enclosed within double quotes, since itshould be
valid in this case).� ! syntax error� ! object does not exist� ! permission denied (Would occur if the client did not previously perform a touch for the object)

Version 1.1 Page 19

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

4.1.5 Retrieve an object or retrieve the status of an object

Since the Status Server is an open repository without permissions, any client has the ability to retrieve an object from
the Status Server. This command will return the value of an object in the Status Server if it is valid. If not, the reason
it is not valid will be returned. Valid values will always be encapsulated within double quotes. The message flow for
this command can be found in figure 6.

GET [NAME=]obj_name

Input parameters for the retrieval command are as follows:� obj name- Name of the object. The object name can be specified either asa name containing the fully qualified
absolute directory path or as a name containing a relative directory path.

The client will receive one of the following responses:� . obj name objvalue (Always enclosed within double quotes)� . obj name EXPIRED (If the object is expired)� . obj name UNDEFINED (If the object has not been initialized)� ! object does not exist� ! syntax error

4.1.6 Initiate a monitor on a directory or data object

Clients can initiate monitors on Status Server directory ordata objects in order to be informed whenever the value of
an object changes. To reduce the load on both the Status Server and client, a client also has the opportunity to specify
a “deadband” range for both floating point and integer objects. The message flow for this command can be found in
figure 6.

It is not necessary for the directory or data object to exist in the Status Server in order to place a monitor on it. In this
case, the monitor will be applied by the Status Server once the object is created. The client does not need to perform
a touch on the object before placing a monitor on the object. The ability to place a monitor on an object, which does
not yet exist, is available to prevent potential race conditions during client start up.

A monitor placed on a directory object will cause the client to be notified when the contents of a directory change. If
the Status Server contained a directory with individual data objects for each filter currently installed in the CFH12K
instrument, it could be possible for a client to place a monitor on this directory. As a result, a dynamic drop-down list
could be generated with the current filter options. It is important to note that when a client is notified that a directory
object has changed, the client must retrieve the contents ofthe directory via an “ls” command.

MONITOR [NAME=]obj_name [DB=deadband_val]

Input parameters for the registration command are as follows:� obj name- Name of the directory or data object. The object name can be specified either as a name containing
the fully qualified absolute directory path or as a name containing a relative directory path.

Version 1.1 Page 20

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design� deadbandval (OPTIONAL) - This defines the offset which a data object valuemust exceed before the Status
Server will inform the client of a change in value. The serverwill suppress updates which are within “deadband”
units of the value last sent to the client. For example, if theclient specifies a deadband of 2.5 and the value of
an object changes from 1 to 3, the client would not be informedof a change, since the value changed by 2 units
and the deadband is 2.5 units. This parameter must be specified as a positive number. If a deadband parameter
of 0 is specified, this is the same as not providing the deadband argument. In this case, a deadband limit is not
used. If the deadband parameter is not numeric, or is a negative number, this will be considered a syntax error.

The client will receive one of the following responses:� . obj name MONITORED� ! syntax error

In the case of the Client C-API, receiving a syntax error should never occur and would be considered an internal error.

4.1.7 Remove a monitor from a directory or data object

Any time a monitor is added to an object in the Status Server, it can be removed by initiating a removal request.
Monitors are not automatically removed when an object is removed from the Status Server. The message flow for this
command can be found in figure 6.

UNMONITOR [NAME=]obj_name

Input parameters for the retrieval command are as follows:� obj name- Name of the object. The object name can be specified either asa name containing the fully qualified
absolute directory path or as a name containing a relative directory path.

The client will receive one of the following responses:� . obj name UNMONITORED� ! syntax error� ! monitor does not exist

4.1.8 Retrieve monitor updates

The Status Server will send an “out-of-band” notification any time it has monitored information to send to the client.
As mentioned earlier, this notification will be indicated byan asterisk (’*’) in the first column. The full message
will be “* MAIL”. At this point, the client will most likely respond with a request to retrieve monitor information.
The Status Server will then send all monitored information to the Client followed by an end-of-transmission (EOT)
message indicating that all monitored information has beensent. The full EOT message will be “. EOT”. It is possible
for the Status Server to place additional information following the mailbox and EOT messages perhaps for a comment.
While this will be unused initially by the client API, it may be useful to have. For example, when a directory listing is
performed interactively it may be useful to have a comment indicating the number of objects returned. The message
flow for this command can be found in figure 11.

POLL

Version 1.1 Page 21

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

This command does not have any input parameters.

The POLL command will generate individual responses for each monitored value which has been modified beyond
the deadband threshold. Once all the individual monitor updates have been sent by the Status Server, the client will
receive an end-of-transmission (EOT) message. It is also possible for the client to send a POLL command and not
receive any response outside of the EOT. This could occur if amonitored value changed enough to warrant a monitor
notification (mailbox message), but when the Status Server received a POLL from the client, the value was within the
deadband threshold for the last value sent to the client. Thepossible responses the client should expect to see are as
follows:� + obj name objvalue (New value of a valid object)� + obj name NONEXISTENT (If the object has been removed)� + obj name EXPIRED (If the object has expired)� + obj name UNDEFINED (If the object has not been initialized)� . EOT (following the last updated value)� ! nothing monitored by client (if the client requests a POLL,but the client does not have any monitors defined

on objects).

The first character of the response indicates what the response means. If the first character is a ’+’, this indicates that
the value of a monitored object has changed. If the objvalue is enclosed within double quotes, it is a valid value. If
not, the state of the Status Server data object is now invalid. The ‘’+’ character is also used to indicate that at least one
more response will be sent by the Status Server for the POLL request. Once the client receives the “. EOT” message,
it will know that the Status Server is done sending monitor updates. In addition, it is possible for the client to receive
a single-line error response indicating that the client requested a POLL, but the Status Server does not have any record
of monitored objects for the client.

If the Status Server should detect that the client sent a POLLcommand without having received a mailbox message, this
will be considered a protocol error and the client will receive a protocol error response. At this point, any subsequent
message received from the client will result in the Status Server terminating the client connection. The Client API will
make sure that a POLL command is never sent to the Status Server without itself having received a mailbox message,
so this should not be an issue with the Client API. This is added as a safeguard to prevent clients who are directly
using the socket protocol from incorrectly implementing the protocol for monitor retrieval and possibly generating an
excessive number of POLL requests.

4.1.9 Remove an object

Once a successful touch has been performed on an object, it ispossible for the client to initiate a removal request of
the object within the Status Server. The message flow for thiscommand can be found in figure 6.

RM [NAME=]obj_name

Input parameters for the object removal command are as follows:� obj name- Name of the object. The object name can be specified either asa name containing the fully qualified
absolute directory path or as a name containing a relative directory path.

The client will receive one of the following responses:� . obj name NONEXISTENT� ! syntax error� ! object does not exist� ! permission denied (Would occur if the client did not previously perform a touch on the object)

Version 1.1 Page 22

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

4.1.10 Get the current directory path

Objects within the Status Server can be referenced whether via a fully qualified directory path/object name combi-
nation, or a relative path/name combination. In order to manage relative path references, the current path will be
maintained by the Status Server for each client connection.This request enables the client to retrieve its current path.
The message flow for this command can be found in figure 6.

PWD

This command does not have any input parameters.

There is really only one response which the client should expect to see as a result of this command.� . PWD currentpath (This will be represented as an absolute directory path)

The initial path for each client is ’/’. This path will remainthe default path until it is changed by the client via the CD
command.

4.1.11 Change the current directory

This request will cause the Status Server to modify what it uses as the current directory for relative path references
made by a client. The client can specify the new current directory with either a relative path or absolute path. The
message flow for this command can be found in figure 6.

CD [PATH=]dir_path

Input parameters for the change directory path command are as follows:� dir path - New directory path to be used by the Status Server for relative path references made by this client.
The directory path can be specified either as an absolute pathor a relative path offset from the currently defined
relative path.

The client will receive one of the following responses:� . PWD dir path (This will be represented as an absolute directory path)� ! syntax error� ! directory does not exist

4.1.12 Create directory or register intent to remove a directory

While required directories are automatically created as part of the touch command when objects are created, it is also
possible to explicitly create a directory. This option willcreate a directory if it doesn’t already exist.

This command must be used prior to removing a directory and all of its contents. When a touch is performed on a
directory, it is possible to remove the directory and all theobjects within it without performing an explicit touch on
each object. The message flow for this command can be found in figure 6.

TOUCHDIR [DIR=]dir_path [COMMENT=dir_comment]

Input parameters for the directory touch command are as follows:

Version 1.1 Page 23

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design� dir path - The directory path can be specified either as an absolute path or a relative path offset from the current
directory path.� dir comment(OPTIONAL) - A description of the directory

The client will receive one of the following responses:� . dir path TOUCHED (This will be represented as an absolute directory path)� ! syntax error

4.1.13 Remove a directory

It is possible to remove a directory and all its objects. In order to help prevent an inadvertent removal of a directory, a
touchdir must be performed on the directory before it can be removed. In addition, the directory must not contain any
subdirectories.

RM -R [NAME=]dir_path

Input parameters for the directory removal command are as follows:� dir path - The directory path can be specified either as an absolute path or a relative path offset from the current
directory path.

The client will receive one of the following responses:� . dir path REMOVED� ! syntax error� ! directory not found� ! directory contains subdirectories� ! directory contains hidden objects� ! permission denied

4.1.14 Retrieve the contents of a directory

Much like the “ls” command on the UNIX file system, it will be possible to retrieve the contents of a directory. This
command may return more than one line as a response. The client will receive a first line indicating whether the
command was successful followed by a sequence of responses with the contents of the directory. The last line sent
by the server will indicate the end of the transaction. Objects and directories will be returned in an ascending ASCII
sort order by name. In addition, this command will allow for the same regular expression matching rules used by the
UNIX “ls” command. The message flow for this command can be found in figure 10.

LS [DIR=]dir_path [-l]

Input parameters for the directory retrieval command are asfollows:� dir path - Target of the directory listing. The target can be specifiedeither as a name containing the fully
qualified absolute directory path or as a name containing a relative directory path. In addition, the target can
contain a regular expression to reduce the list of contents returned. An example would be “LS /fits/633333o/a*”.

Version 1.1 Page 24

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design� -l (OPTIONAL) - This parameter will indicate that the directory listing will return the update time, expiration
time, and comment as well in addition to the default fields.

The LS commend will generates a sequence of replies. Upon response to the initial LS request, the Status Server will
send one of the following responses:� + directory target information (Header line echoing back the listing request by the user)� ! syntax error� ! directory does not exist

If the client received a positive response to the listing request, the Status Server will generate individual responses
for each object or subdirectory which matches the query request. Subdirectories can be differentiated from objects
by the trailing ’/’. Once all the contents of the directory have been sent by the Status Server, the client will receive
an end-of-transmission (EOT) message. The possible responses the client should expect following a successful LS
request are:� + fobject name or directory nameg fvalueg� + fobject name or directory nameg fvalueg fupdate timeg fexpiration timeg fcommentg (This would only be

returned if the user chooses the “-l” option)� . EOT

In the case of a full listing, the Status Server will attempt to format it in a readable format, so each category is left
aligned in a column. Strings representing the update time and expiration time will be expressed using the dd-mmm-
yyyy h24:mm:ss format. A directory will be considered not tohave a value and will be represented with the string
“DIRECTORY”. Data objects which have a valid value will havethe returned value enclosed within double quotes.
Invalid values will be expressed without quotes and can be either UNDEFINED or EXPIRED. Any data objects which
were created, but have a value of NONEXISTENT will not be returned as part of the directory listing.

4.1.15 Initiate a trace

For diagnostic purposes, it may be important to have a more detailed view of what is happening within the Status
Server. This may help solve an issue with the way the Status Server is working or help diagnose a misbehaving client.

Trace information will be stored as debug information within the CFHT log. As a result, it will be possible to associate
activity within the Status Server with external events to help identify and narrow down problems. The message flow
for this command can be found in figure 6.

TRACE ON

This command does not have any input parameters

The client should receive the following response:� . TRACE ON

Version 1.1 Page 25

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

4.1.16 Stop a trace

Once a trace is initiated, a client request must be performedto stop it. The message flow for this command can be
found in figure 6.

TRACE OFF

This command does not have any input parameters

The client should receive the following response:� . TRACE OFF

4.1.17 Serialize Status Server data to a file

The Status Server will serialize a copy of itself to disk any time it receives a message from a client, or if the 10 minute
interval has expired. The only information which will be saved is the data associated with the structure used to hold
the Status Server objects. It is important to note that information associated with client connections will not be saved
as part of the serialization process. This is because all client connections will be lost as part of a Status Server restart
and restore operation. The message flow for this command can be found in figure 6.

AUTOSAVE

This command does not have any input parameters

The client should receive the following response:� .AUTOSAVE INITIATED

The Status Server will send a response prior to the initiation of the forked process to perform the serialization. This is
done in order to limit the complexity required to send a true return value as a result of the serialization operation in the
forked process. If the serialization should fail, details regarding the failure should be available in the CFHT log. As a
result, if a client actively chooses to initiate a serialization request, he/she should check to make sure the serialization
file was successfully written.

4.1.18 Shutdown the Status Server

For maintenance reasons, it may be necessary to shutdown theStatus Server. In order to preserve the current state
of information within the server, a copy of the Status Serverinformation will be serialized to disk before an exit is
performed. The message flow for this command can be found in figure 7

SHUTDOWN

This command does not have any input parameters and will not generate a response outside of the EOF sent across the
interface indicating that the socket connection was closedby the server.

4.1.19 Protocol Error

At some point, the client may believe that the Status Server has committed a protocol error violation. If this is detected
by the Client API, it will send a “PROTOCOL ERROR” message to the Status Server. Once the Status Server receives
this message, it will log error information to the CFHT log and terminate the client connection. Figure 9 contains a
sample of a client detected protocol error.

PROTOCOL ERROR

This command does not have any input parameters and will not generate a response outside of the EOF sent across the
interface to the client indicating that its connection was closed by the server.

Version 1.1 Page 26

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5 Client C API

This section outlines the available functions within the C API for clients to interact with the Status Server. More details
regarding the functionality provided by the client API is provided in the subsequent API Reference section.

5.1 API Reference

5.1.1 Access the Status Server

The client will initiate a connection request to the Status Server. For traceability purposes, the Client API will send a
subsequent message with the UNIX Process ID and program name. When a client chooses to establish a connection
with the Status Server, it must decide whether the Client APIshould automatically try to re-establish a connection to
the Status Server if the connection is broken and whether a socket timeout threshold is desired.

A predefined socket timeout threshold will be defined as part of the Client API. This threshold can be modified by
setting a new timeout value via the timeout parameter. If this parameter is less than or equal to 0, the system default
will be used. Otherwise, the new value will be used for the socket timeout. The timeout must be specified in seconds.

It is possible for the socket connection between the Client API and Status Server to go down unexpectedly. The Client
API will provide the option to retry until the connection is re-established. If the retry option is used, the client program
will be blocked until the socket connection is re-established. Any time the Client API retries the connection, it will
resend all “touch”, “touchdir” and “monitor” commands prior to processing the current API call. When the retrypause
parameter is set to a value greater than or equal to 0, automatic reconnection is turned on. If this value is less than 0,
automatic reconnection is turned off. In addition, the retry pause indicates the number of seconds the Client API will
wait to initiate another connection to the Status Server.

The return value from the API call will indicate whether the operation was successful. If the call should happen to fail,
more details regarding the failure will be available in cfhterrno.

PASSFAIL ssLogon(const char *program_name,
const int timeout,
const int retry_pause)

In addition, the client has the option of setting up client callback functions with the C API for the case where a timeout
of the socket occurs or when the socket connection between the Client API and Status Server goes down unexpectedly.
If automatic reconnection is enabled, the client callback for disconnection should never be called. Instead a function
within the the Client API will be called to initiate a retry.

void ssRetryCallback(ss_callback_func retry_fn)

void ssDiscCallback(ss_disc_func disc_fn)

5.1.2 Disconnect from the Status Server

The C API will disconnect from the Status Server by closing the socket. As part of the disconnect, the Client API must
clean up internal resources associated with the Status Server connection. This is also true for the case where the client
detects that the client connection with the Status Server has been broken. When using the C API, a disconnect request
should not fail unless a client connection isn’t available.If the call should happen to fail, more details regarding the
failure will be available in cfhterrno.

If the client makes a call to ssLogoff, this will not cause theautomatic retry mechanism to trigger. A connection to the
Status Server must be subsequently established with another call to ssLogon.

PASSFAIL ssLogoff(void)

Version 1.1 Page 27

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5.1.3 Create an object or register the intent to modify an object

The client must specify the name of the object and optionallyspecify a comment or lifetime. If a lifetime is not
specified, the value of the object will not expire. When usingthe C API, there should not be any cases where a touch
would fail.

void ssTouchObject(const char *name,
const char *comment,
const int *lifetime)

5.1.4 Update an object

The client has the ability to update Status Server objects ofthe following types:� String - Strings can consist of a sequence of 8 bit ASCII characters with the exception of the NULL character.
The NULL character will be used to terminate the string.� Boolean- Data type consisting of two possible values; either TRUE orFALSE.� Floating Point - Double precision floating point number.� Integer - Signed integer number.

Clients using a telnet session will send all data as strings across the socket interface. This is the same way data is sent
to the Status Server by the Client API. In order to support theability to handle 8 bit ASCII characters within a string,
the string is encoded into 7 bit ASCII printable characters by the Client API prior to being sent across the interface. In
addition, boolean, floating point, and integer data is converted to a string prior to being sent to the Status Server. If the
call should happen to fail, more details regarding the failure will be available in cfhterrno.

PASSFAIL ssPutInt(const char *name,
const int value)

PASSFAIL ssPutDouble(const char *name,
const double value)

PASSFAIL ssPutString(const char *name,
const char *value)

PASSFAIL ssPutBoolean(const char *name,
const BOOLEAN value)

5.1.5 Retrieve an object

The client will make a request to retrieve the value of an object. If the request is successful, the value of the Status
Server object will be converted from it’s encoded string format to the type requested via the C API call. This value
will then be stored in the address specified by the user. If therequest is not successful, the details regarding the error
will be stored in cfhterrno.

PASSFAIL ssGetInt(const char *name,
int *value)

PASSFAIL ssGetDouble(const char *name,

Version 1.1 Page 28

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

double *value)

PASSFAIL ssGetString(const char *name,
char *value)

PASSFAIL ssGetBoolean(const char *name,
BOOLEAN *value)

5.1.6 Check for the existence and status of an object

For clients using the C API, the status of the object will be stored in a memory location specified by the user. If the
call should happen to fail, more details regarding the failure will be available in cfhterrno.

PASSFAIL ssStat(const char *name,
ss_stat_t *status)

5.1.7 Initiate a monitor on an object

The client has the option of placing a monitor on any object with optional age and deadband values. If deadband
and/or deadband are not desired, it can be set to 0. This indicates the client would like to monitor each change to an
object value. When monitors are applied using the C API library, an address must be supplied for both the monitored
object value as well as the return code. The return code enables the server to notify a client whenever the state of an
object changes. As a result, the client can be informed when an object becomes expired, NULL, or removed.

Once the client is informed that a monitor was successfully applied, the Client API will store an association between
the name of the object and the value and return value addresses for the object. The Client API can then process monitor
update notification messages and store the value and return codes in the proper memory locations for subsequent use
by the client. If the call should happen to fail, more detailsregarding the failure will be available in cfhterrno.

PASSFAIL ssMonitorInt(const char *name,
const int deadband,
const int age,
int *value,
ss_ret_t *value_status)

PASSFAIL ssMonitorDouble(const char *name,
const double deadband,
const int age,
double *value,
ss_ret_t *value_status)

PASSFAIL ssMonitorString(const char *name,
const size_t max_length,
const int age,
char *value,
ss_ret_t *value_status)

PASSFAIL ssMonitorBoolean(const char *name,
const int age,
BOOLEAN *value,
ss_ret_t *value_status)

Version 1.1 Page 29

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5.1.8 Remove a monitor from an object

The client will initiate the object removal request and should process the return value. If the call should happen to fail,
more details regarding the failure will be available in cfhterrno.

ss_ret_t ssKillMonitor(const char *name)

5.1.9 Retrieve monitor updates

The client will initiate the monitor retrieval request and must be prepared to process the return information sent by the
Status Server. The client will process each line of data until it receives the end-of-transaction indicator.

For clients using the C API, each line of monitored data will be converted and stored in the memory location which was
previously defined during the setup of the monitor. Integer,floating point, and boolean data types will be converted
from the string format received over the interface to the monitor requested data type. Any errors detected, either during
the conversion process or from the data response sent by the Status Server, will be stored in the previously allocated
memory location for return code information. From the C API point of view, this call should not fail unless a client
connection is not available. When using the C API, there should not be any cases where a “poll” would fail.

void ssPoll(void)

5.1.10 Remove an object

The client will initiate the removal request and should check the return value to determine whether the operation was
successful. If the call should happen to fail, more details regarding the failure will be available in cfhterrno.

PASSFAIL ssRemove(const char *name)

5.1.11 Get the current directory path

The client will initiate the current directory request and receive a pointer to a string containing the directory path.
When using the C API, there should not be any cases where a request to retrieve the current directory path would fail.

char *ssPwd(void)

5.1.12 Change the current directory

The client will initiate the change current directory request and should check the return value to determine whether
the operation was successful. If the call should happen to fail, more details regarding the failure will be available in
cfht errno.

PASSFAIL ssChdir(const char *path)

5.1.13 Create directory or register intent to remove a directory

Prior to removing a directory and its contents the client must perform a “touchdir” on the directory. The “touchdir” also
enables a client to create the directory if it doesn’t already exist and to alter the comment associated with a directory.
When using the C API, there should not be any cases where a touchdir would fail.

void ssTouchDir(const char *path,
const char *comment)

Version 1.1 Page 30

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5.1.14 Remove a directory

The client will initiate the directory removal request and should check the return value to determine whether the
operation was successful. If the call should happen to fail,more details regarding the failure will be available in
cfht errno.

PASSFAIL ssRmdir(const char *path)

5.1.15 Retrieve the contents of a directory

The client will initiate the directory content retrieval request and must be prepared to process the return information
sent by the Status Server. The client will process each line of data until it receives the end of message indicator.

When using the C API, the client will first make a request to open the directory. The directory can be opened with
a recursive option indicating that all underlying contentswill be returned as part of the request. The return value
from the ssOpendir call will indicate whether the directorycould successfully be opened. The client must then call
ssReaddir until it receives a NULL indicating that all the directory contents have been returned. Directory contents will
be returned in an Object Name=Value and Dir=Name format. Forexample, /i/cfh12k/etype=”FLAT”. If the ssOpendir
call should happen to fail, more details regarding the failure will be available in cfhterrno.

PASSFAIL ssOpendir(const char *path)

char *ssReaddir(void)

5.1.16 Initiate a trace

The client can initiate a trace on all Status Server activity. When using the C API, there should not be any cases where
a trace initiation request would fail.

void ssTraceOn(void)

5.1.17 Stop a trace

A client can stop a trace currently running in the Status Server. When using the C API, there should not be any cases
where a request to stop a trace would fail. If a trace was not running and a request was made to stop a trace, the Status
Server will still send back a positive response.

void ssTraceOff(void)

5.1.18 Serialize Status Server data to a file

A client can request that the Status Server serialize itselfto a file. When using the C API, there should not be any
cases where a serialization request would fail. It is possible that the serialization itself might fail, but the Status Server
does not send a response back to the client once the Serialization is completed. Instead, it sends back a response once
it receives a request to initiate serialization.

void ssAutosave(void)

Version 1.1 Page 31

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5.1.19 Shutdown the Status Server

The client can request a shutdown of the Status Server. This function will return once the message is sent to the Status
Server.

void ssShutdown(void)

6 Software Design

This section provides the design details of the Status Server. At this point, the document only covers the data structures
and software components which make up the Status Server. Coverage of the Client API will be added to this document
soon.

6.1 Status Server Data Structures

There are several key data structures used to hold Status Server data. Figure 13 illustrates the data structures used by
the Status Server. The lines within the figure illustrate howthe data is structured and the relationships between data
structures. Each data structure is explained in more detailin the following sections.

node_info_t

name

comment

value

value_state

full_name

parent

creation_ts

update_ts

lifetime

touch_list

node_list

monitor_list

ls_list

. .
Linked list of time dependent node objects

Linked list of client objects

. .

. .
Linked list of node objects

. .
Linked list of monitor objects

the actual implementation.

NOTE: Although the node, client and monitor list boxes may have

more than one object pointing to them, they are separate lists in

client_info_t

prg_name

pid

ip_address

hostname

login_ts

current_path

is_mbox_empty

monitor_ptr

ls_ptr

is_client_notified

is_monitor_in_prog

is_ls_in_prog

touch_list

ls_list

monitor_list

is_protocol_error

mon_info_t

client

prev_sent_value

object

prev_sent_ts

deadband

creation_ts

node_info_t node_info_t node_info_t node_info_t

client_info_t client_info_t client_info_t client_info_t

node_info_t node_info_t node_info_t node_info_t

mon_info_t mon_info_t mon_info_t mon_info_t

Figure 13: Status Server Data Structures

Version 1.1 Page 32

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.1.1 Client Connection Data (clientinfo t)

The sockio library will manage the low-level socket detailsassociated with the client-server socket connection. At a
higher level, this data structure will be used to manage Status Server information associated with each client connec-
tion.

typedef struct {
char *prg_name;
pid_t pid;
unsigned_char ip_address[4];
char *hostname;
time_t login_ts;
char *current_path;
BOOLEAN is_mbox_empty;
BOOLEAN is_client_notified;
BOOLEAN is_monitor_in_prog;
mon_info_t *monitor_ptr;
BOOLEAN is_ls_in_prog;
mon_info_t *ls_ptr;
linked_list *touch_list;
linked_list *ls_list;
linked_list *monitor_list;
BOOLEAN is_protocol_error;

} client_info_t;

More details regarding each of the fields in the clientinfo t structure can be found in figure 14.

6.1.2 Directory and Object Data (nodeinfo t)

This section outlines the data structure used to define the Status Server directory hierarchy and store object data. Each
node within the Status Server hierarchical structure is described by a nodeinfo t structure. A single data structure is
used to hold either object data or directory data since both node types have very similar data requirements. The data
stored within the nodeinfo t data structure will be object data if the nodelist is set to NULL. If the nodelist field
is not set to NULL, the data stored in the nodeinfo t data structure will be directory data. When the nodelist is not
null, it is possible for a directory to have both subdirectories and/or objects associated with the directory. The lifetime
and monitorlist fields within the data structure are data object specificand will not apply to directory data. If it is
subsequently determined that placing a monitor on a directory is useful, the value and monitorlists could be used for
this purpose.

The value field within the nodeinfo t structure will contain valid data or an indication of why the value is not valid.
Valid values will always be enclosed within double quotes. If the value of an object is not valid, it will not be enclosed
within double quotes. For example, the following values would be considered valid: “data”, “0.0”, or “sample data”.
If a value is not enclosed within double quotes, it must always be one of the following values: NONEXISTENT,
UNDEFINED, or EXPIRED in the case of a data object. Directories will always contain the string “DIRECTORY” in
the value field.

It is possible for a data object to have NONEXISTENT populated in the value field. While it may seem strange to
define a data object with a state indicating that it doesn’t exist, this is used to support the ability to apply a monitor on a
data object which has not been created. In this case, the required directories to hold the data object will be created and
the data object will be created with a NONEXISTENT value. As aresult, it will become possible to define pointers
between a monitor and the object being monitored. If a subsequent “touch” request is made to a data object, the value
of the data object will no longer indicate NONEXISTENT.

In addition to storing the state of a directory or data objectin the value field, the valuestate field contains an enumer-
ated type indicating the state of an object. This field is added to enable more efficient state comparisons.

Version 1.1 Page 33

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Field Default Description
prg name “UNKNOWN” The name of the client program interacting with the Status Server. For

clients using the C-API, this should correspond to argv[0].The program
name is provided through the “register” command.

pid 0 The UNIX Process ID (PID) of the client program interacting with the
Status Server. This will automatically be provided to the Status Server
for clients using the C-API. The PID is provided through the “register”
command.

ip address Client IP address The remote IP address of the client.
hostname Client Hostname The hostname of the client.
login ts Connect Time Time a client connection was established with the Status Server. This

is expressed as the number of seconds elapsed since 00:00:00hours,
GMT, January 1, 1970.

currentpath “/” The current path prepended to relative path references of objects or di-
rectories. The value of this field can be changed by using the “CD”
command.

is mbox empty TRUE Boolean flag indicating whether there any monitoring notifications to
be sent to this client. TRUE if a monitoring notifications must be sent.
FALSE if a monitoring notification does not need to be sent.

is client notified FALSE Boolean flag indicating whether the Status Server has notified the client
that it has monitor updates to retrieve. TRUE if the client has been
nofified. FALSE if the client has not been notified.

is monitor in prog FALSE Boolean flag indicating whether the Status Server is currently sending
monitor updates to this client. TRUE if monitor updates are in progress.
FALSE if monitor updates are not in progress.

monitor ptr NULL Pointer to the next monitor object within the monitorlist which must be
checked to determine if it is eligible to be sent to the clientin a monitor
update message. If the client is not currently retrieving monitor updates,
this field will be set to NULL.

is ls in prog FALSE Boolean flag indicating whether the Status Server is currently sending
directory contents to this client. TRUE if the directory contents are
being sent. FALSE if directory contents are not being sent.

ls ptr NULL Pointer to the next directory listing response within the lslist which
must be sent to the client. If the client is not currently retrieving direc-
tory listing data, this field will be set to NULL.

touch list NULL Linked list of directories and data objects which this client has per-
formed a “touchdir” or “touch” on. If the client has not performed a
“touchdir” or “touch” on any directories or data objects, the touchlist
pointer will be NULL.

ls list NULL Linked list of directory listing responses to be sent to the client during
a directory listing request.

monitor list NULL Linked list of monitor objects. If this client is not monitoring any Status
Server Objects, the monitorlist pointer will be NULL.

is protocolerror FALSE This flag will be set if the client ever sends an out-of-sequence com-
mand violating the Status Server protocol. At this point, the Status
Server expects the client to close its connection. However,if the con-
nection is not closed and another request is received, the Status Server
will close the connection. TRUE if a protocol error has occured. FALSE
if a protocol error has not occured.

Figure 14: Description of Fields within Client Data Structure

Version 1.1 Page 34

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

When the Status Server is initialized, it will contain only one directory node, which is that of the root directory. Much
like the UNIX file system, the root directory is described by asingle forward slash ’/’. Additional directories will be
created when the Status Server receives client “touch”, “touchdir”, or “monitor” requests.

Data object nodes are created when a client either initiatesa “touch” or “monitor” request. As previously mentioned,
a data object will use the value, lifetime, and monitorlist fields within the node structure.

In the case of either a directory or object data, a node will contain a pointer to its parent. In the case of a directory, this
will always be the parent directory. The root node of the directory is a special case and will have the parent pointer set
to itself. Data objects will always point to the directory which has the linked list containing a pointer to the data object
itself.

typedef struct {
char *name;
char *comment;
char value[MAX_VALUE_SIZE];
node_state_t value_state;
char *full_name;
node_info_t *parent;
time_t creation_ts;
time_t update_ts;
time_t lifetime;
linked_list *touch_list;
linked_list *node_list;
linked_list *monitor_list;
linked_list *ls_list;

} node_info_t;

typedef enum {
SS_NONEXISTENT,
SS_NOTDEFINED,
SS_EXPIRED,
SS_VALID

} node_state_t;

More details regarding each of the fields in the nodeinfo t structure can be found in figure 15.

6.1.3 Monitoring Data (mon info t)

This section outlines the data structure used to store monitoring information for a client based on modifications to an
object. The information within the monitoring data structure is essentially a bridge between a client and data object.
Whenever a client requests a monitor to be placed on an object, the object will be created if it didn’t already exist,
before the monitor object is created. Once the monitor object is created, a pointer to the object will be stored within the
monitor lists of both the client object and data object beingmonitored. If a client disconnects from the Status Server,
the monitoring objects and monitor object reference will beremoved before the client object is removed.

typedef struct {
node_info_t *object;
client_info_t *client;
char prev_sent_value[MAX_VALUE_SIZE];
time_t prev_sent_ts;
double deadband;

Version 1.1 Page 35

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Field Default Description
name directory or object name The name of the directory or data object represented as a relative name

with respect to its parent directory.
comment Comment or NULL Descriptive comment of this directory or object. If a comment is not

supplied by the client, it will be set to NULL.
value NONEXISTENT or NOT-

DEFINED for a data object.
A valid value for a directory

The value of a data object or directory. This field will eithercontain
valid data which is enclosed with double quotes or a string indicating
why the field is not valid. For a directory object this field will always
contain a valid value enclosed in double quotes. For a data object this
field will either contain valid data or NONEXISTENT, NOTDEFINED,
or EXPIRED.

valuestate SSNONEXISTENT,
SSVALID, or
SSNOTDEFINED

An enumerated type which defines the state of the object or directory.
This information can also be determined from the value field,but the
enumerated type provides a more efficient means of identifying the state
of an object. Directories will always be created with a valuestate of
SS VALID. Data objects will be created as either SSNONEXISTENT
or SSNOTDEFINED.

full name absolute path Fully qualified path of the directory or data object. This will always be
expressed in absolute terms starting at the root directory (“/”).

parent parent node or itself In the case of a directory or data object, this field will pointto the parent
directory object. In the case of the root directory object, this field will
point back to itself.

creationts creation time Time the directory or data object is created in the Status Server. This
is expressed as the number of seconds elapsed since 00:00:00hours,
GMT, January 1, 1970.

updatets update time Time the directory or data object is last updated in the Status Server.
This field is only updated when the state or value of an object changes.
The first updatets will be set to the time the object is created. This
is expressed as the number of seconds elapsed since 00:00:00hours,
GMT, January 1, 1970.

lifetime lifetime or 0 Number of seconds following each update which the object will be con-
sidered valid. If a lifetime was not provided by the client, it will be set
to 0.

touch list empty list Linked list of clients which have performed a “touch” on thisdirectory
or data object.

nodelist NULL or empty list A linked list of pointers to directory and data objects. Thislist will
only be used for directory objects. With data objects, this field will be
NULL.

monitor list empty list A linked list of pointers to monitor objects placed on a data object. This
list will only be used for data objects.

ls list empty list A linked list of pointers to monitor objects used to return directory and
data object information.

Figure 15: Description of Fields within the Directory and Data Object Structure

time_t creation_ts;
} mon_info_t;

More details regarding each of the fields in the moninfo t structure can be found in figure 16.

Version 1.1 Page 36

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Field Default Description
object pointer to object A pointer to the data object which is being monitored (nodeinfo t).
client pointer to client A pointer to the client data structure (clientinfo t).
prev sentvalue UNSPECIFIED The previous value of the object sent to the client. When the monitoring

object is initially defined, it will be set to UNSPECIFIED.
prev sentts 0 Time when the client was last sent a monitoring update. When the mon-

itoring object is initially defined, it will be set to 0. This is expressed as
the number of seconds elapsed since 00:00:00 hours, GMT, January 1,
1970.

deadband deadband or 0.0 Deadband value specified by the client. If a deadband is not specified,
it will be set to 0.0.

creationts creation time Time the monitoring object was created in the Status Server.This is
expressed as the number of seconds elapsed since 00:00:00 hours, GMT,
January 1, 1970.

Figure 16: Description of Fields within Monitoring Data Structure

6.2 Status Server Software Components

The Status Server is broken in a set of components illustrated in figure 17. A brief description of each of the compo-
nents follows with a more in depth description available in the following sections.

Services

Data Monitor

Services

Client

Services

Time Dependent

Services

Socket Library
(libsockio)

Message Handler

Utility Functions

Figure 17: Status Server Software Components� Socket Library - The socket I/O library to handle the low-level socket details.� Message Handler- Processes the messages sent from the Client and handles anyresponse which must be sent
back to the client.� Data Services- Provides functions to manage the directory and data objectstructure (nodeinfo t).� Monitor Services - Provides functions to manage the monitoring data structure (moninfo t).� Client Services- Provides functions to manage the client data structure (client info t).� Time Dependent Services- Provides functions to manage a list of data objects which have a time dependency
based on a non-zero lifetime.� Utility Functions - Provides a set of utility functions shared among the StatusServer components.

6.2.1 Message Handling Services

This component interacts closely with libsockio, and will set up the following callback routines to be called by lib-
sockio.

Version 1.1 Page 37

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design� client addhook() - Called whenever a new client is connecting to the Status Server. This routine will check
to make sure the client is connecting from a valid IP address.The IP address must be 127.*, 128.171.80.*,
or 128.171.83.*. If a client attempts to connect from an invalid address, the connection will be refused. If
the connection is successful, the message handler will callthe createClient() routine in the Client Services
component to create a client data structure and return this structure to libsockio to associate with the socket
connection.� client del hook() - Called whenever an end-of-file or error condition occurs with a client. The message handler
will call the removeClient() routine in the Client Servicescomponent to clean up monitors associated with this
client and all other client specific data.� client recv hook() - Called whenever the client has sent a message to be processed. The message handler will
parse the message and will call the appropriate service components to process the message. Once the message
is processed, the message handler will send the appropriateresponse back to the client.� client sendhook() - Called whenever the output buffers are empty in casethe client wishes to send an asyn-
chronous message to the client. The message handler, via service routines, will check if a mailbox message,
monitor information, or directory listing data is ready to be sent to the client.

This is the main component of the Status Server and it initiates all the message processing done by the Status Server.
In addition, it contains main() and sets up the sockio library calls to initiate and manage the server socket connection.
The message handler also handles a reload of the Status Server from serialized data. The Status Server will save it’s
internal state via a set of messages similar to the messages sent by a client. As a result, restoring the Status Server is
simply a process of replaying a set of previously sent transactions.

The main() function within the message handler will set up the commands which manage the interaction with the
sockio library. An example of a code segment which could be used to manage the socket communications via the
sockio library is as follows:

int main(int argc, const char *argv[])
{

sockserv_t *statserv = sockserv_create(port #);

/* Check if the socket could be created successfully */
if (!statserv)

exit(EXIT_FAILURE);

/* Set up the callback functions */
statserv->client_recv_hook = client_recv_hook;
statserv->client_del_hook = client_del_hook;
statserv->client_add_hook = client_add_hook;
statserv->client_send_hook = client_send_hook;

/* Set up an infinite loop to manage the socket communication */
for (;;) {

/* Service all time dependent objects */
serviceTimeDepObjects(void);

/* Continue calling sockserv_run with a timeout */
/* value of zero if it returns a positive return */
/* value. This indicates that something was */
/* received or sent during the last iteration. */
while (sockserv_run(statserv, 0) > 0) { ; }

Version 1.1 Page 38

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

/* Call sockserv_run with a timeout interval */
/* corresponding to when the next time dependent */
/* object should expire. */
sockserv_run(statserv, getMinimumTimoutInterval() * 100);

}
exit(0);

}

The message handler will handle each Client request and is responsible for writing a response to sockio buffer provided
by the clientrecv hook() and clientsendhook() callback functions.

When a request is received from a client, it will be checked tomake sure it is a valid URL formatted string. If so, the
first argument will parsed and checked against the set of known commands. If it is recognized as a legal command,
it will be processed according to the type of command it is. Each of the following sections provides a brief overview
of the processing performed for each command and the utilityfunctions within the other software components which
will be called. Most of the functionality has been describedas the pseudocode processing which occurs when each
command is received by the Status Server.

6.2.1.1 Register Client with the Status Server

The pseudocode processing for how a client “register” request is handled is as follows:

if (register message not valid) {
write a syntax error message to the sockio buffer
return

}

update the client object with updateClient()
write a positive response to the sockio buffer

6.2.1.2 Disconnect from the Status Server

The pseudocode processing for how a client “logoff” requestis handled is as follows:

call the client_del_hook callback function
write an empty string (buf[0] = ’\0’) to the sockio buffer

6.2.1.3 Create an object or register the intent to modify an object

The pseudocode processing for how a client “touch” request is handled is as follows:

if (touch message not valid) {
write a syntax error message to the sockio buffer
return

}

/* Try to create/retrieve the object from the hierarchy. */
/* The create parameter to getObject() must be set to TRUE */
/* and the create_valid parameter must be set to TRUE. */
if (getObject() == NULL) {

Status Server internal error

Version 1.1 Page 39

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

write a negative response to the sockio buffer
return

}
else {

if a lifetime was specified, set it with setObjectLifetime()
if a comment was specified, set it with setNodeComment()

}
add the data object to the client touch list using addTouchNode()
write a positive response to the sockio buffer

6.2.1.4 Update an object

The pseudocode processing for how a client “put” request is handled is as follows:

if (put message not valid) {
write a syntax error message to the sockio buffer
return

}

/* Try to retrieve the object from the hierarchy. Both */
/* The create parameter and create_valid parameters must */
/* be set to false in the call to getObject(). */
if (getObject() == NULL) {

write object does not exist error response to the sockio buffer
return

}

/* Check if the object was previously created, but has a */
/* value of NONEXISTENT */
if (isNodeNonexistent() == TRUE) {

write object does not exist error response to the sockio buffer
return

}

/* Check to see if this object is within the list of */
/* objects the client has performed a ‘‘touch’’ on */
if (touchNodePerformed() == FALSE) {

write permission denied error response to the sockio buffer
return

}

Update the value of the object with setObjectValue()
write a positive response to the sockio buffer

The pseudocode processing is slightly different than the flow diagram for an update in the current Functional Speci-
fication document. In this design, the Status Server will always traverse the directory and data object hierarchy in an
attempt to find the data object and from there determine if theclient has performed a touch. This is a simpler and more
efficient implementation than checking the touchlist associated with the client object first to see if the object has been
touched by the client. This would not be the case if all clientrequests were expressed in terms of an absolute path.
However, by traversing the directory and data object hierarchy it is possible to resolve the path of the object on the fly
instead of converting the path string to absolute path, finding a string match on the absolute path name in the client
object touchlist and then referencing the data object. As a result, the first response that a client may see is that the

Version 1.1 Page 40

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

data object does not exist. Only if the object exists is it possible for the client to receive a notification that it has not
performed a touch on the data object.

6.2.1.5 Retrieve an object

The pseudocode processing for how a client “get” request is handled is as follows:

if (get message not valid) {
write a syntax error message to the sockio buffer
return

}

/* Try to retrieve the object from the hierarchy. Both */
/* The create parameter and create_valid parameters must */
/* be set to false in the call to getObject(). */
if (getObject() == NULL) {

write object does not exist error response to the sockio buffer
}
else {

write positive data object value response to the sockio buffer
}

6.2.1.6 Initiate a monitor on an object

The pseudocode processing for how a client monitoring request is handled is as follows:

if (monitor message not valid) {
write a syntax error message to the sockio buffer
return

}

/* Try to create/retrieve the object from the hierarchy. */
/* The create parameter to getObject() must be set to TRUE */
/* and the create_valid parameter must be set to FALSE. */
if (getObject() == NULL) {

Status Server internal error
write a negative response to the sockio buffer
return

}

/* Check to see if a monitor already exists on that */
/* object for the requesting client */
if (getMonitorByClient() == NULL) {

/* Check to make sure the monitoring object could */
/* be successfully created. */
if (createMonitor() == PASS) {

write a positive response to the sockio buffer.
return

}
else {

Status Server internal error

Version 1.1 Page 41

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

write a negative response to the sockio buffer.
return

}
}
else {

Update the deadband for a monitor with updateMonitorDeadband()
}
write a positive response to the sockio buffer.

6.2.1.7 Remove a monitor from an object

The pseudocode processing for how a monitor will be removed from an object:

if (unmonitor message not valid) {
write a syntax error message to the sockio buffer
return

}

/* Try to retrieve the object from the hierarchy. Both */
/* the create parameter and create_valid parameters must */
/* be set to false in the call to getObject(). If the */
/* object does not exist, the monitor also won’t exist */
/* since an object can not be removed while it is being */
/* monitored. */
if (getObject() == NULL) {

write a monitor does not exist error response to the sockio buffer.
return

}

/* Check to see if a monitor already exists on that */
/* object for the requesting client */
if (getMonitorByClient() == NULL) {

write a monitor does not exist error response to the sockio buffer.
return

}

/* Remove the monitoring record. */
if (removeMonitor() == FAIL) {

write an internal error response to the sockio buffer
}
else {

write a positive response to the sockio buffer.
}

6.2.1.8 Retrieve monitor updates

There are two stages where monitor retrievals occur. First is the processing of the monitoring request, and second is
the handling of the monitor responses. In the first stage, theprocessing is triggered by a call to the clientrecv hook().
In the second stage, the processing is triggered by repeatedcalls to the clientsendhook(). At most, only one message
can be sent to the client with each clientsendhook() callback function call. As a result, if the client must be notified
of many monitor updates, the clientsendhook() will be called multiple times.

The pseudocode processing for how a client “poll” request ishandled is as follows:

Version 1.1 Page 42

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

STAGE 1: Processing initiated when a ‘‘poll’’ request is received.

/* Check to see if the client was sent a mailbox message. */
/* If not, this would be considered a protocol error, */
/* since the client should not be sending a ‘‘poll’’ */
/* request without first being informed with a mailbox */
/* message. */
if (wasMailboxMsgSentToClient == FALSE) {

write a protocol error message to the sockio buffer
mark the client object to indicate that a protocol error was sent
return

}

/* Set up the client object fields to indicate that a */
/* monitor request is in progress. This function should */
/* only fail if the client does not have any monitors */
/* defined. */
if (setMonitorInProgress() == FAIL) {

write a nothing monitored by client error message to the sockio buffer
return

}
else {

Call checkSendMonitor() to send monitoring data to the client
}

STAGE 2: Processing initiated each time the client receives a
client_send_hook() callback function call.

/* Check to see if monitoring data must be sent to the client */
checkSendMonitor()

It is important to note that the processing of a directory listing and monitor retrieval is very similar since each case
requires an iteration through a list of monitor objects. As aresult, it is possible to reuse much of the same code.

6.2.1.9 Remove an object

The pseudocode processing for how a client object removal request is handled is as follows:

if (rm message not valid) {
write a syntax error message to the sockio buffer
return

}

/* Try to retrieve the object from the hierarchy. Both */
/* The create parameter and create_valid parameters must */
/* be set to false in the call to getObject(). */
if (getObject() == NULL) {

write object does not exist error response to the sockio buffer
}

/* Check to see if the object exists but is marked */
/* as ‘‘does not exist’’. */

Version 1.1 Page 43

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

if (isNodeNonexistent() == TRUE) {
write object does not exist error response to the sockio buffer
return

}

/* Check to see if this client is within the list of */
/* clients who have performed a ‘‘touch’’ on the object */
if (touchNodePerformed() == FALSE) {

write permission denied error response to the sockio buffer
return

}

/* Check whether the object can be cleanly removed */
/* using the rmObject() function call */
if (rmObject() == PASS) {

write a positive response to the sockio buffer
}
else {

write an internal error response to the sockio buffer
}

6.2.1.10 Get the current directory path

The pseudocode processing for how a client “pwd” request is handled is as follows:

get the current path with getCurrentPath()
write current path to the sockio buffer

6.2.1.11 Change the current directory

The pseudocode processing for how a client “cd” request is handled is as follows:

/* Make a request to change the current directory path */
if (changeCurrentPath() == FAIL) {

write directory does not exist error response to the sockio buffer
return

}
else {

write new directory path response to the sockio buffer
}

6.2.1.12 Create directory or register intent to remove a directory

The pseudocode processing for how a client “touchdir” request is handled is as follows:

if (touchdir message not valid) {
write a syntax error message to the sockio buffer
return

}

Version 1.1 Page 44

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

/* Use the directory path and try to retrieve the */
/* directory. The create parameter to getDir() must */
/* be set to TRUE and the create_valid parameter must */
/* be set to TRUE */
if (getDir() == FAIL) {

Status Server internal error
write a negative response to the sockio buffer
return

}
else {

if a comment was specified, set it with setNodeComment()
}
add the directory to the client touch list using addTouchNode()
write a positive response to the sockio buffer

6.2.1.13 Remove a directory

The pseudocode processing for how a client “rm -r” request ishandled is as follows:

if (rmdir message not valid) {
write a syntax error message to the sockio buffer
return

}

/* Use the directory path and try to retrieve the */
/* directory. The create parameter to getDir() must */
/* be set to FALSE. */
if (getDir() == FAIL) {

write a directory not found error response to the sockio buffer
return

}

/* Check to see if this directory is within the list of */
/* directories the client has performed a ‘‘touch’’ on */
if (touchNodePerformed() == FALSE) {

write permission denied error response to the sockio buffer
return

}

/* Try to remove the directory. At this point, the function */
/* should only fail if the directory has valid subdirectories */
if (rmDir() == PASS) {

write a positive response to the sockio buffer
}
else {

write directory contains subdirectories error response to the sockio buffer
}

As it is currently designed, directories will never be completely removed as long as they have data objects within them
or subdirectories. In this case it is possible for a directory to have a NONEXISTENT data object within it for the case
of a monitor added to a data object, so it will not be possible to remove the directory. Currently, only data objects
have a value state of NONEXISTENT while directories are always visible. This should not be a problem with the

Version 1.1 Page 45

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

envisioned model for creating and removing directories to hold FITS header information. If needed, directories could
also be given a NONEXISTENT state and effectively hidden from view. This will add some additional complexity
in the checks required when removing data objects and directories. Presumably when a data object or directory is
removed, some recursive traversal of that tree would need tobe performed in order to determine whether directory
objects could then be removed more permanently.

6.2.1.14 Retrieve the contents of a directory

There are two stages where a retrieval of directory contentsoccurs. First is the processing of the directory retrieval re-
quest (“ls”), and second is the handling of the directory responses. In the first stage, the processing is triggered by a call
to the clientrecv hook(). In the second stage, the processing is triggered by repeated calls to the clientsendhook().
At most, only one message can be sent to the client with each client sendhook() callback function call. As a result, if
the client must be sent the contents of a large directory, theclient sendhook() will be called multiple times.

The pseudocode processing for how a client “ls” request is handled is as follows:

STAGE 1: Processing initiated when a ‘‘ls’’ request is received.

if (ls message not valid) {
write a syntax error message to the sockio buffer
return

}

/* Use the dir_path and try to retrieve the directory */
/* The create parameter to getDir must be set to FALSE */
if (getDir() == FAIL) {

write directory does not exist error response to the sockio buffer
return

}

/* Use the directory object returned by getDir() as */
/* the base directory to perform the ls on. Regular */
/* expression rules will be applied to each data */
/* object name to determine if a match exists. If */
/* so, the object name and value will be stored in a */
/* linked list. */
set up the ls_list of ls monitor objects via setupDirectoryListing()

/* Set up the client object fields to indicate that an ls */
/* request is in progress. */
setLSInProgress()

write the directory header to the sockio buffer

STAGE 2: Processing initiated each time the client receives a
client_send_hook() callback function call.

/* Check to see if monitoring data must be sent to the client */
checkSendLS()

As previously mentioned, the processing of a directory listing and monitor retrieval is very similar since each case
requires an iteration through a list of monitor objects. As aresult, it is possible to reuse much of the same code.

Version 1.1 Page 46

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.1.15 Initiate a trace

The pseudocode processing for how a client “trace on” request is handled is as follows:

set the global flag indicating that tracing is enabled
write a positive response to the sockio buffer

6.2.1.16 Stop a trace

The pseudocode processing for how a client “trace off” request is handled is as follows:

set the global flag indicating that tracing is disabled
write a positive response to the sockio buffer

6.2.1.17 Serialize Status Server data to a file

The pseudocode processing for how a client “autosave” request is handled is as follows:

inform client that it has successfully receive the request
execute the serialize() function with the fork flag set to TRUE

6.2.1.18 Shutdown the Status Server

The pseudocode processing for how a client “shutdown” request is handled is as follows:

execute the serialize() function with the fork flag set to FALSE
initiate an exit()

6.2.2 Client Services

This component is responsible for managing the data closelyassociated with a client connection. Most of the functions
manipulate information contained within the clientinfo t data structure.

6.2.2.1 Create a client object

This function creates the client object. Figure 14 containsthe default values within the clientinfo t structure when the
client object is created. The function will return the newlycreated clientinfo t structure for the client.

client_info_t *createClient(void)

6.2.2.2 Update a client object

When a client sends the “register” command with the program name and UNIX Process ID (PID), this function will
be called to add this information to the clientinfo t structure associated with the client connection.

void updateClient(client_info_t *client,
const char *prg_name,
int pid)

Version 1.1 Page 47

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.2.3 Check if a mailbox message was sent to a client

The client should only retrieve monitor information once ithas been informed with a mailbox message that there is
monitored data available for retrieval. The following function will return a boolean indicator of whether the client was
sent the mailbox message. TRUE indicates that a mailbox message was sent to the client. FALSE indicates that a
mailbox message was not sent to the client.

BOOLEAN wasMailboxMsgSentToClient(const client_info_t *client)

6.2.2.4 Check if monitor information must be sent to the client

When the clientsendhook() within the Message Handling Services component is called, a call will be made to this
function to determine whether monitoring data must be sent to the client. If so, it will either send out the next
monitoring update or the EOT message if all monitoring information has been sent to the client.

This function will check whether the ismonitor in prog field within the clientinfo t structure is set to TRUE. If so,
it will start at the monitorptr position within the monitorlist and send the next qualifying monitor update to the
client. If the monitorptr is set to NULL, or there is no more monitoring informationto be sent to the client, an EOT
message will be sent. Once the EOT message has been sent, the is monitor in prog field will be set to FALSE and the
monitor ptr will be set to NULL.

If the is monitor in prog field is set to FALSE, the ismbox empty flag is set to FALSE, and the isclient notified flag
is set to FALSE the client will be sent a mailbox message indicating that there is monitored information ready for
retrieval. Once this message has been sent, the isclient notified flag will be set to TRUE.

void checkSendMonitor(client_info_t *client)

6.2.2.5 Set flag indicating monitoring is in progress

When the clientrecv hook() within the Message Handling Services component receives a “poll” request, a call will
be made to this function to set the appropriate fields to indicate that a monitoring update retrieval command is now in
progress.

This function will perform the following actions:� Set the ismbox empty flag to TRUE� Set the isclient notified flag to FALSE� Set the ismonitor in prog flag to TRUE� Set the monitorptr flag to the first object in the linked list of monitoring objects for this client. If for some
reason, this client received a “poll” request, but it does not have any monitors in its monitorlist, the function
will return FAIL.

PASSFAIL setMonitorInProgress(client_info_t *client)

6.2.2.6 Set flag indicating a directory listing is in progress

When the clientrecv hook() within the Message Handling Services component receives an “ls” request, a call will be
made to this function to set the appropriate fields to indicate that a directory listing is now in progress.

This function will perform the following actions:

Version 1.1 Page 48

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design� Build a linked list of monitor objects hold directory listing information by calling setupDirectoryListing().� Set the isls in prog flag to TRUE� Set the lsptr flag to the first object in the linked list of monitor objects used to hold directory listing information.
If the linked list is either NULL or empty, lsptr will be set to NULL.

void setLSInProgress(client_info_t *client)

6.2.2.7 Check if directory listing information must be sentto the client

When the clientsendhook() within the Message Handling Services component is called, a call will be made to the
this function to determine whether directory listing data must be sent to the client. If so, it will either send out the next
directory listing message or the EOT message if all directory listing information has been sent to the client.

This function will check whether the isls in prog field within the clientinfo t structure is set to TRUE. If so, it will
start at the lsptr position within the lslist and send the next directory listing to the client. If thels ptr is set to NULL,
or there are no more directory contents to be sent to the client, an EOT message will be sent. Once the EOT message
has been sent, the isls in prog field will be set to FALSE, and the lsptr will be set to NULL.

void checkSendLS(client_info_t *client)

6.2.2.8 Add a directory object or data object to the client touch list

This function will add a directory object or data object to the linked list used to store objects which this client has
performed a touch on. The directory object or data object will only be added to the list if it doesn’t already exist in the
list.

void addTouchNode(client_info_t *client,
const node_info_t *node)

6.2.2.9 Check whether a data object or directory object is part of the client touch list

This function will take a directory object or data object andcheck whether a “touch” or “touchdir” was previously
performed on the object by a client. The function will returnTRUE if the object is contained within the linked list of
“touched” objects. Otherwise, the function will return FALSE.

BOOLEAN touchNodePerformed(const client_info_t *client,
const node_info_t *node)

6.2.2.10 Add a monitoring object to the client monitor list

This function will add a monitoring object to the linked listused to store monitor objects.

PASSFAIL addMonitorToClient(client_info_t *client,
const mon_info_t *mon)

Version 1.1 Page 49

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.2.11 Remove a monitoring object from the client monitorlist

This function will remove a monitoring object from the linked list used to store monitor objects. If this monitoring
object can not be found the function will return FAIL.

PASSFAIL removeMonitorFromClient(client_info_t *client,
const mon_info_t *mon)

6.2.2.12 Add a monitoring object to the client ls list

This function will add a monitoring object to the linked listused to store monitor objects for directory listings.

PASSFAIL addMonitorLS(client_info_t *client,
const mon_info_t *mon)

6.2.2.13 Remove a monitoring object from the client monitorlist

This function will remove a monitoring object from the linked list used to store monitor objects for directory listings.
If a monitoring object can not be found the function will return FAIL.

PASSFAIL removeMonitorLS(client_info_t *client,
const mon_info_t *mon)

6.2.2.14 Set the mailbox flag indicating that monitors are available

During object updates or removals, if the monitor criteria has been met to indicate that a client must need to be notified,
this function will be called. This function causes the ismbox empty flag to be set to FALSE. As a result, a mailbox
message will be sent if the isclient notified flag is also set to FALSE.

void setMailAvailable(client_info_t *client)

6.2.2.15 Get the current path associated with a client

This function will return the current path used by the StatusServer for relative path references associated with a client
connection. The returned path will be represented as an absolute path.

char *getCurrentPath(const client_info_t *client)

6.2.2.16 Change the current path associated with a client

This function will change the current directory path associated with a client. The path specified as a parameter can be
specified in either relative or absolute path format. In order to determine whether the newly specified directory path
is valid, this function will call getDir() in order to identify whether a directory referenced with the new directory path
exists. If so, the fullname field within the directory object will be stored in the client object as the new default path
for the client. This function will return FAIL if the requested directory path does not point to a directory within the
Status Server.

PASSFAIL changeCurrentPath(const char *new_path)

Version 1.1 Page 50

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.2.17 Remove a client and all of its relevant data

When a client disconnects from the Status Server, the clientobject and all of its related information must be freed
up and removed. This requires that any client objects referenced in the touchlist of a directory object or data object
be removed. In addition, all monitor objects associated with the client for both directory listings and data object
monitors must be removed. As part of the monitor cleanup, this will require that monitor object references in the
monitor list and lslist for directory and data objects also be removed. This is the processing which is performed by
the removeMonitor() function.

PASSFAIL removeClient(client_info_t *client)

6.2.3 Data Services

This component is responsible for managing the data associated with the hierarchical structure within which Status
Server directory objects and data objects are stored. Most of the functions manipulate information contained within
the nodeinfo t data structure.

6.2.3.1 Create a directory or register the intent to remove adirectory

This function is responsible for creating a directory if it doesn’t already exist. If it does exist, the comment associated
with the directory will be modified if the comment passed in tothe function is not NULL. In order to remove a
comment, an empty string must be passed to this function. Finally, a reference to the client object will be stored in the
touch list if it doesn’t already exist.

void touchDir(const node_info_t *base,
const char *path,
const char *comment,
const client_info_t *client,
node_info_t **dir)

6.2.3.2 Retrieve a directory

This function will retrieve a directory object from the hierarchical Status Server directory structure. If the “create”
parameter is set to TRUE, the directory will be created if it doesn’t already exist. As part of the directory creation
process, intermediate directories may also be created as part of the process. For example, if the Status Server only has
a root directory “/” and this function is called to create /fits/455346o, both a fits directory and 455346o directory will
be created. All directories will be created with a value of “DIRECTORY”.

The address of the directory pointer will be returned from this function if it was successful. If the function returns
FAIL, more details regarding the failure will be available in cfht errno.

PASSFAIL getDir(const node_info_t *base,
const char *path,
const BOOLEAN create,
dir_info_t **dir_p)

Version 1.1 Page 51

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.3 Remove a directory

This function will attempt to remove a directory object fromthe Status Server directory structure. The removal of
a directory object is permitted if the client requesting theremoval has initiated a “touchdir” request for the direc-
tory. Otherwise the function will return FAIL. The functionwill also return fail if the directory object contains any
subdirectories. Detailed information regarding a failurewill be available in cfhterrno.

If the operation is valid, an attempt will be made to remove each data object from the nodelist associated with the
directory object. This will be done by calling the rmObject() function with the checktouch parameter set to FALSE.

A check will then be made to determine if the directory objectcurrently has a touch associated with it from another
client, or if the size of the nodelist is non-zero. If so, the directory object itself can not be completely removed.
Otherwise, the directory object will be removed from the parent directory object nodelist and deallocated.

PASSFAIL rmDir(node_info_t *dir,
const client_info_t *client)

6.2.3.4 Add a data object to a directory object

This function adds an object to the linked list of objects associated with the directory object. This operation should
not fail unless an object with the same object name already exists in the object list, or an attempt is made to add a data
object to another data object instead of a directory object.Detailed information regarding a failure will be availablein
cfht errno.

PASSFAIL addObject(node_info_t *dir,
const node_info_t *obj)

6.2.3.5 Remove a data object from a directory

This function will attempt to remove a data object from the linked list of objects associated with a directory object.
If the data object currently has a touch associated with it from another client, or if the data object currently has
any monitor objects within its monitorlist or ls list, the data object will have its value changed to NONEXISTENT.
Otherwise, this object does not have any external dependencies and will be removed from the parent directory object
nodelist and deallocated.

This function should not fail unless it is called on a directory object or if the client object is not contained within the
linked list of clients who have performed a “touch” on this data object if the checktouch parameter is set to TRUE.
Detailed information regarding a failure will be availablein cfht errno.

PASSFAIL rmObject(node_info_t *obj,
const client_info_t *client,
BOOLEAN check_touch)

6.2.3.6 Retrieve a data object

This function will retrieve a data object with a given objectname from the Status Server hierarchy. If a data object
with the requested name can not be found, the function will return NULL. Otherwise a pointer to the data object will
be returned. This function will iterate through the Status Server hierarchy as needed to find the target object.

If the “create” parameter is set to TRUE, the data object willbe created if it doesn’t already exist along with any
required directories. If the “createvalid” parameter is set to TRUE and a data object is created, it will be created
with a value of UNDEFINED. In addition, the client object will be added to the touchlist associated with the data
object and the data object will be added to the touchlist associated with the client object. Otherwise, the object will
be created with a value of NONEXISTENT.

Version 1.1 Page 52

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

node_info_t *getObject(const char *object_name,
const client_info_t *client,
const BOOLEAN create,
const BOOLEAN create_valid)

6.2.3.7 Set a directory comment

Convenience function to set the comment associated with a directory or data object.

void setNodeComment(node_info_t *node,
const char *comment)

6.2.3.8 Serialize Status Server contents to a file

This function will initialize the serialization process for the entire Status Server hierarchical directory structure and
all the objects contained within the Status Server. Serialization will be performed by saving a series of transactions
which can replayed by the message handler in order to reconstruct the Status Server directory structure and the object
information contained within it. The messages will be identical to the “touch” and “touchdir” requests sent by a
client with the exception that they will contain some additional parameters such as object value, value state, update
timestamp, and creation timestamps for the objects.

During normal operations, the contents of the Status Serverwill be serialized at a predefined interval (probably 10
minutes). The Status Server contents will also be serialized is when a client requests a serialization. In both cases, a
forked process will be used to save the contents of the StatusServer to disk. The only time a fork will not be performed
is when a client request a shutdown of the Status Server, or anerror condition occurs requiring the Status Server to
exit.

This function will initiate recursive processing to traverse the directory structure and initiate serialization for each
directory object and data object within the directory structure.

Whenever the Status Server forks a child process to initiatea serialization, the PID of the child process will be saved.
If a subsequent request for the Status Server to serialize itself is received before the previously spawned child process
has completed, the previous child process will be “killed” and a new serialization will be initiated.

Once the serialization contents are successfully written to a file, the UNIX “mv” command will be performed to
transfer the file contents to the target location. This step is used to prevent the creation of a corrupted or incomplete
file from being written to the standard file serialization target location.

If a function should return FAIL, details will be available in cfht errno.

PASSFAIL serialize(const char *path, BOOLEAN fork)

6.2.3.9 Populate a serialized touch string for a directory or data object

This component will populate a pre-allocated string bufferwith a serialized “touchdir” or “touch” command used to
restore the directory object or data object upon a restore request. If the function should return FAIL, details will be
available in cfhterrno.

PASSFAIL getSerializeTouch(const node_info_t *dir,
char **buffer)

Version 1.1 Page 53

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.10 Create a data object

This function will create a data object and associate with itthe name, comment and lifetime passed in to the func-
tion. Figure 15 contains the default values within the nodeinfo t structure when the data object is created. The
createvalid parameter indicates whether the object should be created with a state of UNDEFINED in the case of
TRUE or NONEXISTENT in the case of FALSE.

void createObject(const char *name,
const char *comment,
const time_t lifetime,
const BOOLEAN create_valid,
node_info_t **obj)

6.2.3.11 Add a monitor to a directory or data object

This function will add a monitor to the linked list of monitorobjects (either monitorlist or ls list). The isnodemonitor
parameter will identify which monitor list the monitor object must be added to. This function should not return FAIL
unless the monitor already exists in the linked list of monitor objects.

PASSFAIL addMonitorToNode(node_info_t *node,
const mon_info_t *mon,
const BOOLEAN is_node_monitor)

6.2.3.12 Remove a monitor from a directory or data object

This function will remove a monitor from the linked list of monitor objects (either monitorlist or ls list) within a
directory object or data object. The isnodemonitor parameter will identify which monitor list the monitor object
must removed from. This operation should not return FAIL unless the monitor object does not exist in the linked list
of monitor objects.

PASSFAIL removeMonitorFromNode(node_info_t *node,
const mon_info_t *mon,
const BOOLEAN is_node_monitor)

6.2.3.13 Retrieve a monitor from a directory or data object

This function will return a monitoring object from the linked list used to store monitors which have been placed on a
data object. Each monitor object within the linked list willbe checked to determine if it is associated with the client
object passed as a parameter. If it is found, a pointer to the monitoring object will be returned. If not, the function will
return NULL.

mon_info_t *getMonitorByClient(const node_info_t *node,
const client_info_t *client)

6.2.3.14 Inform monitoring clients of object changes

This function will go through the linked list of monitoring objects associated with the data object and determine
whether the monitoring criteria has been met to cause a mailbox message to be sent out to the client. This function
should not return FAIL unless it was executed on a directory node.

PASSFAIL informMonitorClients(const node_info_t *obj)

Version 1.1 Page 54

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.15 Setup a monitor listing for a directory

This function will set up a linked list of monitor objects to handle an “ls” command request from the client. This
function will initiate calls to the createMonitor() function in the Monitor Services component to create monitors for
each subdirectory and data object contained within the current directory object. This function should not return FAIL
unless it was executed on an data object node.

PASSFAIL setupDirectoryListing(node_info_t *dir,
const client_info_t *client)

6.2.3.16 Refresh object state

Since some data objects may have a lifetime associated with them, it is important to update the state of the data object
whenever the object becomes expired. This is critical if theobject is being monitored. This function will check and, if
necessary, update the value of a data object to EXPIRED. If the state is updated, the informMonitorClients() function
will be called to handle potential client monitor updates. This function should not return fail unless it was executed on
a directory node.

When an object goes from valid to expired, it must be removed from the time dependent object list by calling remove-
TimeDepObject(). More details regarding the time dependent object list can be found in section 6.2.5.

PASSFAIL refreshObjectState(node_info_t *obj)

6.2.3.17 Check whether a directory or data object is valid

This function will return a boolean value indicating whether the value of a directory or data object is valid. This
function will return TRUE if the valuestate field is set to SSVALID. Otherwise the function will return FALSE.

BOOLEAN isNodeValid(const node_info_t *obj)

6.2.3.18 Check whether a data object does not exist

For monitor purposes, it is necessary to create directory objects and data objects to support monitoring pointer integrity
even if the data objects or directories did not previously exist. This function will return TRUE if the valuestate field
is set to SSNONEXISTENT. Otherwise the function will return FALSE.

BOOLEAN isNodeNonexistent(const node_info_t *obj)

6.2.3.19 Retrieve the value of a directory or data object

This function will return the value of a directory or data object. This value may or may not be valid. In the case of a
directory, this will be a string indicating the change countof the directory.

char *getNodeValue(const node_info_t *node)

Version 1.1 Page 55

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.20 Set the value of a directory or data object

This function will set a new value for a directory or data object. If the passed in value is set to NULL, the value of the
node will be incremented if it is a directory and UNDEFINED ifit is a data object.

In the case of a data object, informMonitorClients() will becalled to determine if clients must be notified of a monitor
change due to a change in the data object value. In addition, acheck is made whether a non-zero lifetime was defined
for the data object. If so, the repositionTimeDepObject() function within the Time Dependent Services component
will be called to handle the positioning of this object within the linked list of time dependent objects.

If the value of a data object is changing from EXPIRED to a valid value, the addTimeDepObject() function will be
called to add this object to the time dependent object list.

void setNodeValue(node_info_t *node,
const char *value)

6.2.3.21 Set the lifetime of a data object

Convenience function to set the lifetime of a data object. Ifthe lifetime of an object is unlimited, it will be set to
0. This function should not return FAIL unless it was executed on a directory node. If the lifetime of the object
changes from unlimited to a valid lifetime, the addTimeDepObject() function must be called in the Time Dependent
Services component to add this data object to the linked listof time dependent objects. If the lifetime of the object
changes from a valid lifetime to unlimited, it must be removed from the list of time dependent objects with the
removeTimeDependentObject() function.

PASSFAIL setObjectLifetime(node_info_t *obj,
const time_t lifetime)

6.2.3.22 Get the lifetime of a data object

Convenience function to retrieve the lifetime of an object.If this function is called on a directory node, a value of 0
will be returned.

time_t getObjectLifetime(const node_info_t *obj)

6.2.3.23 Get the comment associated with a directory or dataobject

Convenience function to retrieve the comment associated with a directory or data object. This may be NULL if a
comment has not been associated with the directory or data object.

char *getNodeComment(const node_info_t *node)

6.2.3.24 Set the full path of a directory or data object

This is a convenience function to set the fully-qualified absolute path of a directory or data object. Once an directory
or data object is created, the path will never change, since it is not possible to move objects within the Status Server.

void setFullPath(const node_info_t *node,
const char *fullpath)

Version 1.1 Page 56

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.25 Get the full path of a directory or data object

This function returns the fully-qualified absolute path of adirectory or data object. The path associated with a directory
or data object should never be NULL.

char *getFullPath(const node_info_t *node)

6.2.3.26 Remove a node

This function will free up all the resources associated a directory or data object and remove it.

PASSFAIL removeNode(const node_info_t *node)

6.2.4 Monitor Services

This component is responsible for managing the data associated with the Status Server monitors. Most of the functions
manipulate information contained within the moninfo t data structure.

6.2.4.1 Create a monitor object

This function will create a monitor object. Figure 16 contains the default values within the moninfo t structure when
the monitor object is created.

The type of monitor object which is being created will be identified with the isdatamonitor. Monitor objects can be
created to support either client requested object monitorsor directory listings. Once a monitor object is created, the
client services component and data services components will be used to ensure that the monitoring object is properly
associated with the client object and data object. If the return value of the function indicates that the call failed, more
details will be available in cfhterrno.

PASSFAIL createMonitor(node_info_t *object,
client_info_t *client,
const double deadband,
const boolean is_data_monitor)

6.2.4.2 Update the deadband threshold for a monitor object

This function will update the deadband threshold for an existing monitor object.

void updateMonitorDeadband(mon_info_t *mon,
const double deadband)

6.2.4.3 Record the object value which has been sent to a client

This function will be called whenever a monitor update is sent to the client. It will set the value sent to the client as
well as the prevsentts timestamp indicating when the client was sent the monitoring information.

void setSentData(mon_info_t *mon,
const char *value)

Version 1.1 Page 57

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.4.4 Check whether a client must be notified of a monitoring change

This function will return a boolean value indicating whether the current value of an object has changed enough to
warrant a client notification.

BOOLEAN notifyClient(const mon_info_t *mon)

6.2.4.5 Remove a monitoring object

This function will free up all the resources associated a monitoring object and remove it. Before a monitor object
is removed, references to the monitor object must be removedfrom the monitorlist and lslist in the nodeinfo t
object and lslist and monitorlist in the clientinfo t object. This operation should not fail, but if it does, moredetails
regarding the failure are available in cfhterrno.

Although the functionality is not contained within this function call, after a monitor is removed, a check should be
made whether the data object being monitored can be removed.Once a monitor is removed, the data object can also
be removed if its value is NONEXISTENT and if the size of its touch list, monitor list and lslist are all zero. In this
case, the object is already marked as non-existent and does not have any other external references to it.

PASSFAIL removeMonitor(mon_info_t *mon,
const BOOLEAN is_data_monitor)

6.2.5 Time Dependent Services

This component is responsible for managing the the data associated with time dependent objects. A time dependent
object is defined as a data object, whose state will change depending upon time. Any data object which has a specified
lifetime is considered a time dependent object. The functions in this component manipulate the linked list of time
dependent objects.

6.2.5.1 Add a data object to the list of time dependent objects

This function will take a data object and try to add it to the linked list of time dependent objects. A check will be made
whether it is a data object and not a directory and whether thelifetime associated with the data object is not set to zero.
Both cases must be true. Also, this function will make sure the object does not already exist in the linked list. If the
object already exists, or the previous checks failed, this function will return FAIL. When the object is inserted in the
list, it will be added in descending order based on the expiration time of the object.

PASSFAIL addTimeDepObject(const node_info_t *obj)

6.2.5.2 Remove a time dependent object from the list of time dependent objects

This function will take a time dependent object and perform asearch to see if the data object already exists in the
linked list of time dependent objects. If so, it will be removed from the list. If not, the function will return FAIL.

PASSFAIL removeTimeDepObject(const node_info_t *obj)

Version 1.1 Page 58

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.5.3 Service time dependent objects

This function will iterate through each node in the linked list of time dependent objects which calculations show
should have changed to an expired state. The state of the object will be refreshed by calling refreshObjectState(). This
function will handle calling removeTimeDepObject() if theobject has changed to an expired state as well as triggering
client monitor notification processing if needed. Since thelist should be maintained in a sorted order by objects which
should be the first to expire at the top, it will only be necessary to iterate through the list until an object has time
remaining before it expires.

void serviceTimeDepObjects(void)

6.2.5.4 Reposition a time dependent object

Whenever a time dependent object is modified, there is a good chance that it must be repositioned within the linked
list. This is because based on its lifetime, the time to the next possible expiration of the object may require a different
positioning within the list which is sorted in descending order based on the expiration time of the object. This function
should not fail unless it is called on a directory object or ifthe data object is not contained within the list of time
dependent objects.

PASSFAIL repositionTimeDepObject(const node_info_t *obj)

6.2.5.5 Retrieve the minimum time to next update

This function will return the number of seconds before another item within the list of time dependent objects must be
serviced. This time interval will be used as part of the calculation to identify the timeout value to call the sockservrun()
function in the sockio library. This time interval becomes the timeout used to call the underlying socket select function
call. This time value can be calculated by determining the time to expiration of the first item in the linked list. If the
list does not contain any time dependent objects, a predefined constant time value will be returned.

int getMinimumTimeoutInterval(void)

6.2.6 Utility Functions

This component contains utility functions which may be usedby one or more Status Server software components.
Some of the functionality which will be provided by this component include:

6.2.6.1 Memory Allocation Wrapper Functions

Memory allocation in the Status Server will be handled in such a way that a call to allocate memory will never fail.
Wrapper functions will be provided around malloc() and realloc() to prevent a calling function from receiving a NULL
pointer indicating that memory could not be allocated. The wrapper functions, ssMalloc() and ssRealloc() will perform
an underlying call to malloc() and realloc(). However, if either of these system calls returns a NULL value, the function
will sleep for a predefined time interval (maybe a second or so) and retry. The function will not return back a pointer
until memory is available. Since the Status Server is single-threaded, this means the server will block until memory
becomes available.

Some analysis regarding some of the alternative approachesto handling out-of-memory conditions is included in the
Design Analysis section at the end of this document.

Version 1.1 Page 59

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.6.2 Linked List Functions

The nodeinfo t and clientinfo t data structures each contain fields identified as linked lists. A complete set of func-
tions will be provided to manipulate the linked lists. The linked lists in the Status Server will be doubly linked and
optionally sorted upon insert.

6.2.6.3 Argument Parsing and Validation Functions

When a client request is received across the socket interface, it must be checked to determine if it is a valid URL
encoded string and, if so, it must be parsed according to its commands and arguments. Parsing functions already exist
within libcli to handle some of the basic argument parsing required.

6.2.6.4 Logging Functions

Error and debug logging will be handled through the logging functions within libcfht. Convenience functions to handle
the formatting of debug and error information before cfhtlogv is called may be included here.

7 Design Analysis

Throughout the design process, there were alternative approaches which were analyzed in order to decide the final
design choice. This section addresses some of the alternatives and the final decision.

7.1 Out-of-Memory Handling in the Status Server

Several of the components and functions in the Status Serverwill require memory to be allocated or reallocated as
part of its functionality. It is possible for calls to malloc() or realloc() to fail in the unlikely event that memory is
not available on the machine. While this event hopefully will never happen, it is an error condition which must be
managed. This section addresses the issue and some possiblealternatives. A decision must still be made on the
approach to be implemented in the Status Server. The API calls and pseudocode documented in the software design
don’t take into account error conditions caused by the inability to allocate enough memory.

7.1.1 Alternatives for Handling Out-of-Memory Condition

In many cases, the memory allocation will occur as a result ofa client request. In this case, it could be possible
to send a return message to the client indicating that the request could not be processed. Other times, the memory
allocation could occur when a client must be informed of a monitoring event and space can not be allocated in the
client monitoring object to hold the new value. At this point, it could be possible to defer the monitor update by treating
this a the same case as a full network buffer. Using the error message approach to handling “out-of-memory” errors,
the Status Server would continue to operate in a somewhat degraded mode until additional memory becomes available.
This would require the client to handle additional failed return values. A basic flow diagram for this approach is shown
in figure 18.

Another alternative would be to have the Status Server add retry logic to both the malloc() and realloc() function calls.
In this case, if memory was not available, it would sleep for some period of time before retrying. Since the Status
Server is single-threaded, this means the entire Server process will block while memory is not available. Also, any
client request currently in progress will block causing theclient socket connection to remain tied up until the client-side
socket timeout threshold is reached. This approach would eliminate the need to check for out-of-memory conditions
simplifying the Client API and Status Server along with eliminating one possible return value the client may need to
check for. The disadvantage is that the connection may remain tied up or time out. Hopefully, the process gobbling

Version 1.1 Page 60

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Status

Server
Client

Memory not

available

Request

Out of Memory Response

Figure 18: Status Server Memory Allocation Failure Error Message Flow

up the memory is not the Status Server itself. If so, this approach would cause the Status Server to slowly consume
more and more memory. If the memory is being consumed by another process, it is possible that the process will soon
die and normal operation can be quickly resumed. If a core dump of the process is triggered, it could take some time
before the memory again becomes available. A basic flow diagram for this approach is shown in figure 19.

Status

Server
Client

Request

Memory not available

Retry

sleep(x)

Memory availableResponse

CASE 1: Successful Retry

Status

Server
Client

..

Request

Memory not available

sleep(x)

Retry

Memory not available

Retry

sleep(x)

Memory not available

Socket Timeout

CASE 2: Retry / Client Timeout

EOF

Figure 19: Status Server Memory Allocation Failure Retry Message Flow

A final alternative could be to initiate a predefined number ofretries and if the memory can not be allocated when
retries are exhausted, serialize the contents of the StatusServer and trigger an exit. This approach would require
that buffers required for serialization be preallocated and that the IO processes used to write the data to a file do not
require additional memory allocation. The total time available to retries must be set below the default socket timeout
defined for socket connections. In this case, the client would not need to implement any additional error checking for
individual command responses, and it will be guaranteed notto block if it has connected to the Status Server without
the autoretry option. For clients connecting to the Status Server with the autoretry option, they will block until the

Version 1.1 Page 61

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Status Server is restarted. A basic flow diagram for this approach is shown in figure 20.

There is a good chance that this alternative would not work, since there is a good possibility that the IO processes used
to write the data to a file will require an allocation of memory.

Status

Server
Client Client

Request

Memory not available

sleep(x)

Retry
Memory not available
sleep(x)

Retry

Retry count reached

Serialize to disk

exit(FAIL)

EOF

EOF

. .

Figure 20: Status Server Memory Allocation Failure Retry and Exit Message Flow

7.1.2 Preferred Approach to Handling an Out-of-Memory Condition

The Status Server will implement the second approach, whichrequires the Status Server to add retry logic to both the
malloc() and realloc() function calls. In this case, if malloc() or realloc() function calls fail, the Status Server will sleep
for a predefined time before retrying the memory allocation.

8 Document Change Log

Version Date Comments
1.0 May 10, 2002 First release for review.
1.1 May 28, 2002 Revised document based on comments from S. Isani and J. Thomas.

Version 1.1 Page 62

