Status Server Detailed Design

Tom Vermeulen

28 May 2002

This document is available on the Web at: http://softwdiné.fcawaii.edu/sserver/detadesign/

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Contents

1 Introduction 8
1.1 PUIMPOSE . . o o e e 8
1.2 SCOPE . . o o 8
8

1.3 References. e e e e

2 Development and Execution Environment

2.1 Hardware e e
2.2 Software
3 Status Server System Overview 9

3.1 Cliente Server Communication oL e e
3. L1 OVEIVIEW . . o o o e 9
3.1.2 Directory Structure e e e e 10
3.1.3 Directory and Data Object Information, 11
3.1.4 Message Flows between Clientand Server. 12

4 Command Protocol 15

4.1 ClientCommand SyntaX 0 0 e e e e 16
4.1.1 Register Client with the Status Server (OPTIONAL) 18
4.1.2 Disconnectfromthe Status Server e 18
4.1.3 Create an object or register the intent to modify aedhgr directory 19
4.1.4 Updateanobject e e 19
4.1.5 Retrieve an object or retrieve the status ofanobject 20
4.1.6 Initiate a monitor on a directory ordataobject o oL 20
4.1.7 Remove a monitor from a directoryordataobject 21
4.1.8 Retrieve monitorupdates L. e 21
4.1.9 Removeanobject. e 22
4.1.10 Getthecurrentdirectorypath 23
4.1.11 Change the currentdirectory L e 23
4.1.12 Create directory or register intentto removeathrge. 23
4.1.13 Remove adireCtory o 0 e e e e e 24
4.1.14 Retrieve the contents of adirectoryo 24
4.1.15 Initiate atrace. e e 25
4.1.16 StopatraCe e e e 26
4.1.17 Serialize Status Serverdatatoafile Lo 26
4.1.18 Shutdown the Status Server e 26
4.1.19 ProtoCcol Error. e 26

Version 1.1 Page 2

Canada-France-Hawaii Telescope Corp.

Status Server Detailed Design

5 Client C API

5.1 API Reference
5.1.1 Access the Status Server
5.1.2 Disconnect from the Status Server
5.1.3 Create an object or register the intent to modify aeatbj
5.1.4 Update an object
5.1.5 Retrieve an object
5.1.6 Check for the existence and status of an object

5.1.7 Initiate a monitor on an object

5.1.8 Remove a monitor from an object

5.1.9 Retrieve monitor updates
5.1.10 Remove an object
5.1.11 Get the current directory path
5.1.12 Change the current directory
5.1.13 Create directory or register intent to remove a thirgc
5.1.14 Remove a directory
5.1.15 Retrieve the contents of a directory
5.1.16 Initiate a trace
5.1.17 Stop atrace
5.1.18 Serialize Status Server data to a file

5.1.19 Shutdown the Status Server

6 Software Design

6.1 Status Server Data Structures

6.1.1 Client Connection Data (cliefo_t)

6.1.2 Directory and Object Data (nadlgo_t)
6.1.3 Monitoring Data (marinfo_t)
6.2 Status Server Software Components

6.2.1 Message Handling Services

6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4
6.2.1.5
6.2.1.6
6.2.1.7
6.2.1.8

Version 1.1

Register Client with the Status Server
Disconnect from the Status Server
Create an object or register the intent to modifylgaat
Updateanobject

Retrieve anobject

Initiate a monitor on an object

Remove a monitor from an object

Retrieve monitorupdates

Canada-France-Hawaii Telescope Corp.

Status Server Detailed Design

6.2.1.9 Removeanobject e 43
6.2.1.10 Getthe currentdirectorypath 44
6.2.1.11 Change the currentdirectory 44
6.2.1.12 Create directory or register intentto removeeatiry 44
6.2.1.13 Removeadirectory e e 45
6.2.1.14 Retrieve the contentsofadirectoryo oo 46
6.2.1.15 Initiate atrace e e 47
6.2.1.16 Stopatrace e e 47
6.2.1.17 Serialize Status Serverdatatoafile. 47
6.2.1.18 Shutdownthe Status Server e e e 47
6.2.2 ClientServiCes e e 47
6.2.2.1 Createaclientobject e 47
6.2.2.2 Updateaclientobject e 47
6.2.2.3 Check if a mailbox message was senttoaclient 48
6.2.2.4 Check if monitor information must be sent to therdlie 48
6.2.2.5 Setflagindicating monitoringisin progress o oo 48
6.2.2.6 Setflag indicating a directory listingisinprogres. 48
6.2.2.7 Check if directory listing information must be semthe client 49
6.2.2.8 Add a directory object or data object to the clienttolist 49
6.2.2.9 Check whether a data object or directory objectiisgidahe clienttouchlist 49
6.2.2.10 Add a monitoring object to the client monitorlist. 49
6.2.2.11 Remove a monitoring object from the client moriigdr. 50
6.2.2.12 Add a monitoring objecttothe clientislist. 50
6.2.2.13 Remove a monitoring object from the client moristr. 50
6.2.2.14 Setthe mailbox flag indicating that monitors aeglaiele 50
6.2.2.15 Getthe current path associated withaclient 50
6.2.2.16 Change the current path associated withaclient 50
6.2.2.17 Remove aclientand all ofitsrelevantdata 51
6.2.3 DataServiCes e 51
6.2.3.1 Create a directory or register the intent to remadiessttory 51
6.2.3.2 Retrieve adirectory e 51
6.2.3.3 Removeadirectory e 52
6.2.3.4 Addadataobjecttoadirectoryobject L. 52
6.2.3.5 Remove adataobjectfromadirectory 52
6.2.3.6 Retrieve adataobject 52
6.2.3.7 Setadirectorycomment e 53

Version 1.1

Canada-France-Hawaii Telescope Corp.

Status Server Detailed Design

6.2.3.8 Serialize Status Server contentstoafile 53
6.2.3.9 Populate a serialized touch string for a directoyata object 53
6.2.3.10 Createadataobject L e 54
6.2.3.11 Addamonitorto adirectoryordataobject. L. 54
6.2.3.12 Remove a monitor from a directory or dataobject 54
6.2.3.13 Retrieve a monitor from a directory or dataobject... 54
6.2.3.14 Inform monitoring clients of objectchanges 54
6.2.3.15 Setup a monitor listing foradirectoryo L. 55
6.2.3.16 Refreshobjectstate e 55
6.2.3.17 Check whether a directory or data objectisvalid 55
6.2.3.18 Check whether a data objectdoesnotexist 55
6.2.3.19 Retrieve the value of a directory ordataobject 55
6.2.3.20 Setthe value of adirectory ordataobject., 56
6.2.3.21 Setthe lifetime ofadataobject oo 56
6.2.3.22 Getthelifetime ofadataobject. L. 56
6.2.3.23 Get the comment associated with a directoryoralgect 56
6.2.3.24 Set the full path of a directory or dataobject 56
6.2.3.25 Get the full path of a directory ordataobject 57
6.2.3.26 Removeanode e 57
6.2.4 MONItOr SEIVICES e e 57
6.2.4.1 Createamonitorobject e 57
6.2.4.2 Update the deadband threshold fora monitorobject 57
6.2.4.3 Record the object value which has been sentto d@clien. 57
6.2.4.4 Check whether a client must be notified of a monitpeimange 58
6.2.4.5 Remove a monitoringobject L 58
6.2.5 Time DependentServices e e 58
6.2.5.1 Add a data object to the list of time dependentobject 58
6.2.5.2 Remove a time dependent object from the list of tieeddent objects 58
6.2.5.3 Service time dependentobjects e 59
6.2.5.4 Reposition atime dependentobject L. 59
6.2.5.5 Retrieve the minimumtimetonextupdate, 59
6.2.6 Utility Functions e 59
6.2.6.1 Memory Allocation Wrapper Functions 59
6.2.6.2 Linked ListFunctions 60
6.2.6.3 Argument Parsing and Validation Functions 60
6.2.6.4 LoggingFunctions e e 60

Version 1.1

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

7 Design Analysis 60
7.1 Out-of-Memory Handling in the Status Server 0 . 60
7.1.1 Alternatives for Handling Out-of-Memory Condition. 60
7.1.2 Preferred Approach to Handling an Out-of-Memory Gtod 62

8 Document Change Log 62

Version 1.1 Page 6

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

List of Figures

1 Status Server High-Level System Diagram i oo 9
2 Characters Which mustbe URL Encoded wuu . . 10
3 Status Server Hierarchical Name-Value Pair Representati. 11
4 ClientConnectionMessage Flow 12
5 ClientDisconnectMessage Flow 13
6 Client Command Request Message Flow 13
7 Client Shutdown Request Message Flow wuu i 14
8 Out-of-Sequence Client Request Message Flow 14
9 Out-of-Sequence Server Response Message Flow 14
10 Directory Listing RequestMessage Flow o o o 15
11 Typical Monitoring Message Flow 16
12 Monitoring Message Flow with Midstream Update 17
13 Status Server Data Structures L e e e e 32
14 Description of Fields within Client Data Structure 34
15 Description of Fields within the Directory and Data Obj8tructure 36
16 Description of Fields within Monitoring Data Structure. 37
17 Status Server Software Components e e e e 37
18 Status Server Memory Allocation Failure Error MessagevFl. 61
19 Status Server Memory Allocation Failure Retry MessagsvFL 61
20 Status Server Memory Allocation Failure Retry and Exissege Flow 62

Version 1.1 Page 7

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

1 Introduction

1.1 Purpose

The purpose of this document is to define the detailed degigcification for the Status Server. The detailed design
specification documented here is based on a set of previdafilyed requirements and functional specification. The
implementation of the Status Server will be based on thegdesitlined in this document. While the Client APl is
mentioned in some detalil, this document does not adequatebr the detailed design of the Client API. Either this
document will be amended to fully cover the Client API, or tletailed design of the Client API will be covered in a
separate document.

The first draft of this document must be reviewed by the membfthe software group and will be amended following
review. The implementation stage will not start until thesiew has been completed and the document updated.

1.2 Scope

Unless otherwise noted, the detailed design specificaiimmified in this document are intended to be implemented
in the first release of the Status Server. However, releagéresnents may dictate the priority and staging of func-
tionality.

1.3 References

The design of the Status Server is based on a previouslylisbidh set of requirements and functional specification.
In addition, the Status Server will utilize a previously tteh CFHT Socket Library, which is often referred to as
“sockio” in this document. More details regarding the regmients, functional specification, and sockio library can
be found at the following locations on the CFHT intranet.

e Status Server Requirements Document - http://softwdrebhefwaii.edu/sserver/requirements/

e Status Server Functional Specification - http://softwethe_hawaii.edu/sserver/fuspec/

e CFHT Socket I/O Library - http://software.cfht.hawaiitgdockio/

2 Development and Execution Environment

Both the Status Server and Client API library will be deve&ldsing the C language and conform to the established
CFHT coding standard. The software will be compiled for tireé major UNIX architectures in use at CFHT; HP-UX,
Sun Solaris, and Linux. The Client API library will be avdila on the three previously mentioned architectures.

2.1 Hardware

The amount of processing power required to run the StatueBsrlargely dependent on the load placed upon it by its
client connections. Based on the previously defined remerd that clients not update data at frequencies greater tha
1 Hz, a moderately configured system should be more thanisuffito run the Status Server. Benchmarking must be
performed following implementation to determine what tygi¢al memory and CPU utilization for the Status Server
will be.

The machine running the Status Server must have a 100Mbpsiettconnection and be accessible by other machines
on the CFHT network.

Version 1.1 Page 8

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

2.2 Software

Clients wishing to use the Client C-API must be running gitiB-UX, Sun Solaris, VxWorks, or Linux. The C-API
library will be compiled and linked as a static library targe

3 Status Server System Overview

A visual representation of the high-level components inedlin the Status Server System can be found in figure 2.
This document focuses on the Status Server and Client C ARpooents and the message protocol used between
client and server. Itis possible for users to connect to ta&uS Server via a telnet session, using the same message
protocol used by the client C API.

YT YT)
o | o |g
= = S
g S | =
= = 5
o 0 el
S > | T
= I |
) <
3 YT
% ()
o —
2 2
- A A 5| &
. . = (7]
Client using the =) @
<
C API 2 o
o A J

Status Server

Telnet Client

Figure 1: Status Server High-Level System Diagram

3.1 Client< Server Communication
3.1.1 Overview

The Status Server will listen over a socket interface tantliequests. The server will service each request and send
back an associated response. With the exception of a discorequest, each client request will receive a response
from the Status Server. In most cases, the client will recaisingle line response to a request. The exception to
the single response model is the case where a client hasstedquaonitoring updates or the client has requested the
contents of a directory. Multiple line response messag#éaimiays be terminated with an end-of-transaction (EOT)
return message. The client must not send any new commantis has fully processed the current command. If, for
some reason, the server receives a new command request él@ntdefore it has sent the client the last response, it
may inform the client that a protocol error has occurred.hg point, the Status Server will expect the client to close
the connection. If, however, the client sends another comaiythe Status Server will close the client connection.

In the case of monitored objects, it is possible for a clieneteive an unsolicited message across the interface. This
message is triggered the first time a client-monitored ahgeapdated beyond the “deadband” restriction and the
client has not already been informed of a monitor update e@ndient is informed that it has monitored information

Version 1.1 Page 9

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

to retrieve, it must initiate a “poll” request to retrieveetmformation. This is an event-driven model which triggers
the client to always initiate a retrieval of monitor infortita. This document does not address the handshaking
implementation concerning how a client using the Client ARl be notified that monitors are available and the
triggering mechanism to retrieve them. This will be definethie detailed design of the Client API.

The Status Server will utilize the sockio library to handie tow-level socket details. The sockio library uses a singl
threaded non-blocking approach to handling client corioest The interaction between the sockio library functions
and the Status Server will be discussed in more detail indftezare design section of this document. In addition, you
can review the the CFHT Socket I/O Library document for maferimation regarding the design of this library.

Both the Status Server and sockio library are designed ih auway that any data sent across the socket can be
gracefully handled. This includes receiving binary datarmusually long messages which may or may not be properly
terminated with a newline character. If a client attemptsaionect from outside the CFHT network, or a client violates
the established message protocol, whenever possiblenitection will be terminated.

Each request received by the Status Server will be checkethk® sure it is both a valid command and does not
contain any invalid characters. The Status Server will gmnfcess requests which contain URL encoded 7 bit ASCII
printable characters terminated with a newline (CR/LF oj.UFa non-conforming request is received, it will be
rejected with a “syntax error” response. In the Status Sezmeoding scheme, only printable characters with the
exception of some special characters can be sent unenceidede 2 shows the characters which must be explicitly
encoded prior to being received by the Status Server.

Character ASCII Value (Hex) | Reason for Encoding

Percent Sign (%) 25 Used to URL encode/escape other characters, so it should
itself also be encoded.

Single Quote (™) 27 Used as a wrapper around distinct fields of data. The
parser will treat data within a single quotes as one field.

Double Quote (") 22 Used as a wrapper around distinct fields of data. The
parser will treat data within double quotes as one field.

Control Characters < 20 Must be encoded to prevent unpredictable behavior.

Extended Characters >T7E Must be encoded to prevent display issues via an interac-
tive telnet session.

Figure 2: Characters Which must be URL Encoded

URL encoding of a character consists of a “%” symbol, follovzy the two-digit hexadecimal representation (case-
insensitive) of the character value. For example, a tabacherwould be encoded as “%09".

Since the Status Server does not perform any encoding odotecfunctionality, functions will be available in the
Client API to perform encoding and decoding of Strings from&bit character format to URL encoded format.
Clients which decide to access the Status Server via a t&hsston or custom socket implementation, must be aware
of the URL encoding requirements of the Status Server arfdipethe necessary encoding.

It is important to note that any encoding schemes used topsatate data are completely hidden from clients using
the Client API. A client using the Client API does not needatl any encoding or decoding functions.

All string data stored and manipulated within the Statuy&es 7 bit only.

3.1.2 Directory Structure

Objects within the Status Server are grouped together ipealikke fashion patterned after the UNIX file system. As a
result, it will be possible for a client to traverse and marépe objects within the Status Server much like traversing
a directory tree and manipulating files in a file system. Oijagthin the Status Server can be referenced either via
a fully qualified directory path/object name combinationaarelative path-name combination. In order to manage
relative path references, a current path will be maintafioecach client connection. Rules to determine whether
a path-name combination is expressed as an absolute patlativer path will be applied the same way they are in

Version 1.1 Page 10

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

a UNIX file system. A visual example of the type of structurediso hold Status Server information is shown in
figure 3.

Status Server database

Format is /path/and/varname = # Description in coment#
Formatting of <sanple value> indicates "native" type for this field.
This is handled internally by the routine that serializes the database.

TRUE/ FALSE - Bool eans will have *un-quoted* TRUE or FALSE as the val ue.
"string" - Strings always saved with " as the first char in value field.
10. - Float values will always show a deci mal point (even if .0)

15 - Nuneric values without a decinmal indicate integers.

Top-1evel "directories":

/il with a subdirectory for each instrument (often sane nanes as handl ers)
/t/ with subdirectories for each tel escope subsystem

/p/ for plant environnent, weather, data-|ogger variables

/f] has subdirectories for each exposure where FI TS headers are accunul at ed

HHHFHHFEHFFEHFHFHHF R

lil

/i I megacan

/il megacani eti ne
/i I megacani et ype
/il megacan filter
#

[i/cfhl2k/ are all generated by 12kcon(detcom) and used to be in ., 12kcom par
#

I nstrunments

Megacam agent stuff
10. # Current exposure tine
"Bl AS" # Current exposure type
0 # Current filter position

/i /cfhl2k/ status = "Idling" # Canmera status for GU
lilcfhl2k/ raster = "FULL" # Current raster setting
[i/cfhl2k/etine = 10. # Current exposure tine
li/cfhl2k/ etype = "FLAT" # Current exposure type
lilcthl2k/filter =0 # Current filter position
lilcfhl2k/filter[O0] = "R # Desc. of filter in slot O
lilcthl2k/filter[1] ="V # Desc. of filter in slot 1
lilcfhl2k/filter[2] ="B" # Desc. of filter in slot 2
lilctfhl2k/filter[3] =" # Desc. of filter in slot 3
/il cfhl2k/ observer ="Glileo" # Current OBSERVER header
/il cfhl2k/ obj ect = "TF dawn" # Current OBJECT header

/il cfhl2k/ comment = "Twi light flats" # Current CMMIOBS header

/il cfhl2k/ pi nane = "Mllier" # Current PINAME header
/ilcfhl2k/runid = "991 | F142" # Current RUNI D header

Figure 3: Status Server Hierarchical Name-Value Pair Regmation

3.1.3 Directory and Data Object Information

Each directory and data object in the Status Server cortdistseries of attributes. These attributes include:

1. Name - Within the Status Server the object name, in combinatidh vt$ associated directory path location,
must be unique. The name and directory path must consisttoihg ®f 7 bit ASCII printable characters. In
addition, the following series of characters will not beméted in a directory path or object name (*, ’, =,
space).

2. Value - The value stored with the object. The value of an objectestan the Status Server will always be
enclosed within double quotes if it is valid. If the value bétobject is not valid, it will not be enclosed within
double quotes. For example, the following values would besimered valid: “data”, “0.0”, or “sample data”.
If a value is not enclosed within double quotes, it must akvag one of the following values.

Version 1.1 Page 11

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

(@) NONEXISTENT - If a request is received by the Status Server to initiate aitnoon a data object
which does exist, a data object will be created, and its vailldbe set to NONEXISTENT. For a client
perspective, any request made to update or retrieve the wéthis object will fail with an indication that
the object does not exist, until the object is created wittbac¢h” command request (see section 4.1.3).

(b) UNDEFINED - If a client has created an object, but has not assigned & vadlbis would be the initial
value of an object following a “touch” command request (ssation 4.1.3).

(c) EXPIRED - If the object has not been updated within a “lifetime” lemgf time since its last update.

3. Comment- An entry describing what the object is.

4. Lifetime - Indicates the maximum amount of time this object can beidensd valid. As an example, the
current seeing may only be defined to be valid for an hour.

If a data object has a value of NONEXISTENT, it will be complgtremoved and deallocated whenever its use counts
are zero. This means that a data object can not be completalyved if a client has performed a touch, monitor, or
directory listing request on the object. This is a requiretite enforce pointer integrity within the Status Server.

More details regarding the attributes associated with ectbiry or data object can be found in the software design
section (see 6.1.2).

3.1.4 Message Flows between Client and Server

In order to understand the communication between clientsener, a set of message flows is included to illustrate
normal operational flows and error conditions. In each flmkigddines indicate Client API or Status Server initiated
messages while dotted lines indicate low-level socket agess

e Client Connection - Figure 4 illustrates the normal sequence of messages used avclient connects to the
server. In the case of a Client APl connection, the Proce¢RID) and Program Name will be sent to the Status
Server in a message following the initial connection. Thiel@IAPI should always receive a positive response
to this message. If not, this will be considered an internadreand the Client API will log debug information

and exit.
Status
Client
Server
Try to Establish Socket Connection
Lo Y e e]
If IP address is a valid CFHT address and
a file descriptor is available, connect should
___ Connection Successful | be suecessi
Client
API
Send PID and Program Name
Check command syntax. If ok, send
PASS response a positive response.

Figure 4: Client Connection Message Flow

Version 1.1 Page 12

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

¢ Client Disconnection- Figure 5 illustrates the normal sequence of messages whatned client disconnects
from the server. It assumes that the client sent a messagsctndect from the server. It is also possible for
the client to close its end of the socket connection in ordérigger a disconnect. The Client API will close
the socket connection instead of sending a message to ttus Starver. It will always be safe to allow a client
program using the Client API to exit without explicitly tdgring an ssLogoff() function call. Once the program
exits, the socket should automatically be closed.

Status

Client Server

Disconnect Request Message

Clean up client
EOF resources

Figure 5: Client Disconnect Message Flow

e Command Request Figure 6 illustrates the normal message sequence wheard sénds a request. This will
be the standard request-response flow for almost all the @rmdswith the exception of the “getdir”, “poll”,
“logoff”, and “shutdown” commands. The response from that® Server will indicate whether the command
was processed successfully and may contain data if themssps valid. If the command failed, the response
will indicate the reason for the failure. It is possible fbetclient to receive a mailbox message indicating that
objects monitored by the client have changed prior to rémgithe command response. The Client API must
handle this situation properly.

Status

Client Server

Request

Response [DATA]

Figure 6: Client Command Request Message Flow

e Server Shutdown Request Figure 7 illustrates the message sequence when a clieme¢stga shutdown of
the Status Server. Once the Status Server has saved thedirgtcucture to disk, it will clean up its internal
resources and exit. This process will cause each clientextiad to the Status Server to receive an indication
that its socket connection to the Status Server has beesddhysthe server.

¢ Client Out-of-Sequence Request Figure 8 illustrates a sample message sequence if a diigiatés an out-
of-sequence message. The client must always wait for tipense to a previous message before sending a new
message. For clients using the Client API, the API will takeecof waiting before a new message is sent. If
a client violates this protocol, the server will send a mgsda the client indicating that a protocol violation
occurred. The client should then close the socket conmedfithe client does not close the socket connection,
the Status Server will close the client connection uponivetganother request.

e Server Out-of-Sequence ResponseFigure 9 illustrates a sample message sequence if a ckertves a
response from the Status Server which it believes is ogeqgfience. On the client side, this would be considered
a protocol violation by the Status Server. If the Client ARteunters this situation, it will send a “protocol
error” message to the Status Server. The Status Serveresfibnd by logging error information to the CFHT
log and closing the client connection. The Client APl musabke to handle a “mailbox” message at almost any

Version 1.1 Page 13

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Status

Client Client
Server

Shutdown Request

Serialize directory contents
Clean up internal resources

EOF Perform an exit()

Figure 7: Client Shutdown Request Message Flow

. Status
Client
Server

Request

Request

Protocol Error Response

EOF
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =~

Clean up client
resources

Figure 8: Out-of-Sequence Client Request Message Flow

time, so this will not be considered a protocol violation eléxception is if the Server sends multiple “mailbox”
messages before the client sends a “poll” request.

. Status
Client
Server
Request
Response
Response
Protocol Error Message
Clean up client
EOF
e oo T o] resources

Clean up server
connection
resources

Figure 9: Out-of-Sequence Server Response Message Flow

e Directory Listing Request - Figure 10 illustrates the message sequence when a clieds$ sevalid directory
listing request. The server will send the directory headdoded by the set of directories and objects. Once
all the directory contents have been sent, the Status Seiillesend an end-of-transaction (EOT) message.

Version 1.1 Page 14

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

If the directory is empty, the directory header will be sesitdwed by an immediate EOT message. If the
client requests a directory which does not exist, or if thewsmnd syntax is invalid, the Status Server will
send a descriptive error message instead of sending thetatiyédneader. The Status Server will not accept any
additional requests from the client until after the EOT naggshas been sent. If this situation occurs, and is
detected by the Status Server, it will send a protocol erresgage to the client.

Status

Client CASE 1: Populated Directory Server

Directory Listing Request

Directory Header

Directory Contents

Directory Contents

Directory Contents

EOT Message

Status
Server

Client CASE 2: Empty Directory

Directory Listing Request

Directory Header

EOT Message

Figure 10: Directory Listing Request Message Flow

e Complete Monitoring Flow - Figure 11 illustrates the complete set of messages exeldang typical moni-
toring flow. Once the Status Server receives the monitoieretk request, it will reset its flag indicating that a
mailbox has previously been sent to the client. As a resultisequent changes to client monitored objects may
trigger a new mailbox message to be sent to the client. An pleaof this situation is illustrated in figure 12.

It is possible that the latest monitor update will be senttdlient in the current monitor retrieval already in
progress. If so, when the client initiates another moniétrieval request the Status Server may immediately
return an EOT message. The Status Server will not acceptdhitianal requests from the client until after the
end-of-transaction message has been sent. If this situatiours, and is detected by the Status Server, it will
send a protocol error message to the client.

4 Command Protocol

The previous section illustrated the high-level messagsipg protocol between client and server. This section ad-
dresses the detailed syntax and format of the individuakagess. As previously mentioned, each and every client
request, with the exception of the “logoff” and “shutdowrm@guest, will receive a response. The server will only
handle single line URL encoded messages terminated withvBnge(*\r\n” or “\n”). If a request is received, which

is not properly URL encoded, it will be rejected.

The first character of a Server Response indicates the typspbnse sent by Status Server. There are five different
responses which the Status Server can send to the Clierft.dE#ltese responses is summarized in the following list:

Version 1.1 Page 15

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Update Monitor Status
Client Client Server

Object Creation, Update or Removal

Object Creation, Update or Removal

Check if client must be notified
of new monitor infomation. In
this example, the answer is YES.
Monitor Mailbox
Notification Message

Monitor Retrieval

Request Reset the
mailbox flag

Name, Value Monitor Msg.

Name, Value Monitor Msg.

EOT Message

Figure 11: Typical Monitoring Message Flow

e Command Passed ('.")- This response indicates that the request initiated by tlenGvas successfully pro-
cessed. The End of Transmission (EOT) message will alwaysdmeded by a ..

e Multiple Line Response ('+') - This response indicates that it is part of a multiple lingoense message from
the Status Server and at least one more line will be sent bSttdtes Server. The final message for a multi-line
response, such as a directory listing or retrieval of maimgpinformation, will always be “. EOT".

e Command Failed (") - This response indicates that the Status Server was natcgplecess the client request.
Details regarding the error will follow the explanation pbiA sample error response is “! syntax error”.

e Protocol Error (?") - This response indicates that the Status Server was not@plecess the client request
because a protocol error occurred. The client will recdiesfollowing message “? protocol error”.

e Mailbox ('*") - This response indicates that monitored information islalvke for retrieval. As mentioned
earlier, this response may be received at any time by thatcliehe full mailbox message will be sent as “*
MAIL".

The first character encoding scheme is defined in such a wait thaot specific to any particular command request
sent across the interface from the client.

4.1 Client Command Syntax

This section contains the full set of commands, the requiyathx of each command, and the response a client should
expect to see. Optional arguments are included in squaokdtsa“[]”. The command syntax is based on a “mixed
positional/keyword” system. In the case of mandatory argnis, they can be provided either as space delimited fields
or as a fully qualified argument. As an example, the “REGISTERNnmand can either be specified as REGISTER
124 “foo” or as REGISTER PID=124 NAME="foo". Optional argmts must always be specified in a fully qualified
format. Command and argument specifiers are case insendior example, the “REGISTER” command could be

Version 1.1 Page 16

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

Update Monitor Status
Client Client Server

Object Creation, Update or Removal

Object Creation, Update or Removal

Check if client must be notified
of new monitor information. In

this example, the answer is YES.
Monitor Mailbox

Notification Message

Monitor Retrieval
Request

Reset the

Name, Value Monitor Msg. mailbox flag

Object Creation, Update or Removal

Check if client must be notified
of new monitor information. In
Name, Value Monitor Msg. | this example, the answer is YES.

EOT Message

Monitor Mailbox
Notification Message

Figure 12: Monitoring Message Flow with Midstream Update

sent in either upper or lower case. For clarity purposes,nsand and argument specifiers are shown in upper case
with the arguments in lower case within this document.

If a string argument contains embedded spaces, it must Besedcwithin either single or double quotes indicating
that the spaces are part of the argument string. Withoutrnbtsing quotes, the parser will interpret the string as
separate arguments. Numeric parameters should not besedahdthin quotes. If the Status Server receives a numeric
parameter enclosed within quotes, it will strip off the qesobefore converting the string to a number.

The Client API will always send commands with fully qualifiacguments and place quotes around each string pa-
rameter sent to the Status Server.

Itis important to note here that the value of an object starelde Status Server will always be enclosed within double
quotesifitis valid. If the value of the object is not valitiwill not be enclosed within double quotes. For example, the
following values would be considered valid: “data”, “0.@t, “sample data”. If a value is not enclosed within double
guotes, it must always be one of the following values: NONEKENT, UNDEFINED, or EXPIRED. As a result of
this encoding scheme, it is possible for the Status Senagrid back a response to the client which seems to indicate
that the command passed, but the Status Server value idhaatualid. It will be the responsibility of the Client API

to handle these as conditions and supply the appropriaieiaformation available to the client.

All responses that return a data object name or directoryenaith always return this value in its fully-qualified
absolute path format. The exception is directory listindgewme the absolute path of the directory will be included as
part of the header line and each data object name within tketdry will be expressed in relative path format.

In some cases, the response from the Status Server coffitaiosrhmand and in other cases it does not. Since a client
can only send one command request at a time, it is not negdssamcode the command request within the response.
Instead, the command responses have been set up in such hav#@ycobuld be ossible to set up a cacheing proxy

Version 1.1 Page 17

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

server to relay Status Server information. In order to emalhils, wherever possible a command/value response is
returned with the object name and object value. A proxy sereald store a local copy of the values sent to and from
the Status Server in order to reduce the load on the StatusiS&here are no plans currently in place to deploy such
a server, but the message protocol has been implementedhrasuay that this could be a possibility in the future.

It is possible for the Status Server to supply additionabinfation following some of the documented command
responses. While the additional information may be igndmgthe Client API, it could be useful for interactive use.
For example, the Status Server may include the number oitetarned for a directory listing request following the
end-of-transaction (EOT) message.

4.1.1 Register Client with the Status Server (OPTIONAL)

Once a socket connection is established between the ChenBtatus Server, additional details describing the client
can be sent to the Status Server. This registration messag#onal, but will always be sent as part of the Client API
initialization. Typically, a user interacting with the 8ia Server via a telnet session will not use this command. The
message flow for this command can be found in figure 4.

REGQ STER [PI D=] pi d [NAVE=] cl i ent _nane
Input parameters for the registration command are as fetlow

e pid - Process ID (PID) of the client process interacting with 8tatus Server. This will be the PID of the
process invoking the Client C-API.

e client_.name- Program name. This is the same as argv[0].
Response the client would expect to see:

e . welcome clienihame

e | syntax error

In the case of the Client C-API, receiving a syntax error $thaever occur, and would be considered an internal error.

4.1.2 Disconnect from the Status Server

The connection between client and Status Server will rerpaisistent until the client chooses to disconnect, or the
network connection between client and server is broken.Wiseng a telnet connection, it is sometimes easier to type
a short command than the CTRL-"]’ quit sequence. The Stagnge® will have a command available to enable a client

to terminate the connection. This command will cause thenttio receive an EOF across the interface indicating that
the Status Server has closed the connection. The messadeflnvs command can be found in figure 5.

QUT

This command does not have any input parameters and willerargte a message response.

Version 1.1 Page 18

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

4.1.3 Create an object or register the intent to modify an obgct or directory

Prior to either updating or removing an object within thet@&eerver, the client must perform a “touch” on the object.
The touch enables a client to specify the intent to updateamlifyja value in the Status Server. The message flow for
this command can be found in figure 6.

TOUCH [NAME=] obj _nane [COMMENT=0bj commrent] [LIFETI ME=obj lifetine]
Input parameters for the registration command are as fellow

e obj_name- Name of the object. The object name can be specified eitteename containing the fully qualified
absolute directory path or as a name containing a relatiezidiry path. Absolute references will be prefixed
by a leading '/. Relative path references may be prefixett wither a “./” or “../”. The object name may not
have a trailing '/’ character, since this is used to indiGatrectory.

e obj_comment(OPTIONAL) - A description of the object.

e obj_lifetime (OPTIONAL) - An integer number expressed in seconds, whienfifies the amount of time the
object will be considered valid following a modification.

Response the client would expect to see:

e . obj.name TOUCHED (If the object did not previously exist, thewaill be “UNDEFINED”)

e | syntax error

In the case of the Client C-API, receiving a syntax error &haever occur and would be considered an internal error.

4.1.4 Update an object

Once a successful touch has been performed on an objeqipissible for the client to initiate an update request. The
update request causes the value associated with the abjeeiodified. The message flow for this command can be
found in figure 6.

PUT [NAME=] obj _nane [VALUE=] obj _val ue
Input parameters for the update command are as follows:

e obj_name- Name of the object. The object name can be specified eitteename containing the fully qualified
absolute directory path or as a name containing a relatreetdiry path.

e obj_value- New value for the object.
The client will receive one of the following responses:

e . obj.name ohjvalue (The returned objalue will always be enclosed within double quotes, sinaghduld be
valid in this case).

e | syntax error
e | object does not exist

e | permission denied (Would occur if the client did not prewsty perform a touch for the object)

Version 1.1 Page 19

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

4.1.5 Retrieve an object or retrieve the status of an object

Since the Status Server is an open repository without psiroms, any client has the ability to retrieve an object from
the Status Server. This command will return the value of gaatlin the Status Server if it is valid. If not, the reason
it is not valid will be returned. Valid values will always be@psulated within double quotes. The message flow for
this command can be found in figure 6.

GET [NAME=] obj _nane
Input parameters for the retrieval command are as follows:

e obj_name- Name of the object. The object name can be specified eitteename containing the fully qualified
absolute directory path or as a name containing a relatreetdiry path.

The client will receive one of the following responses:

e . obj_name ohjvalue (Always enclosed within double quotes)
e . obj name EXPIRED (If the object is expired)
e . obj.name UNDEFINED (If the object has not been initialized)

I object does not exist

I syntax error

4.1.6 Initiate a monitor on a directory or data object

Clients can initiate monitors on Status Server directorglaia objects in order to be informed whenever the value of
an object changes. To reduce the load on both the Statusr@eelient, a client also has the opportunity to specify
a “deadband” range for both floating point and integer ojethe message flow for this command can be found in
figure 6.

It is not necessary for the directory or data object to exishe Status Server in order to place a monitor on it. In this
case, the monitor will be applied by the Status Server one®lfject is created. The client does not need to perform
a touch on the object before placing a monitor on the objeleé ability to place a monitor on an object, which does

not yet exist, is available to prevent potential race caondg during client start up.

A monitor placed on a directory object will cause the clienbe naotified when the contents of a directory change. If
the Status Server contained a directory with individuahddijects for each filter currently installed in the CFH12K
instrument, it could be possible for a client to place a maron this directory. As a result, a dynamic drop-down list
could be generated with the current filter options. It is im@ot to note that when a client is notified that a directory
object has changed, the client must retrieve the conterkeafirectory via an “Is” command.

MONI TOR [NAME=] obj _nane [DB=deadband_val]
Input parameters for the registration command are as fetlow

e obj_name- Name of the directory or data object. The object name campéeified either as a name containing
the fully qualified absolute directory path or as a name doirtg a relative directory path.

Version 1.1 Page 20

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

e deadbandval (OPTIONAL) - This defines the offset which a data object valugst exceed before the Status
Server will inform the client of a change in value. The sew#rsuppress updates which are within “deadband”
units of the value last sent to the client. For example, ifdlent specifies a deadband of 2.5 and the value of
an object changes from 1 to 3, the client would not be inforofealchange, since the value changed by 2 units
and the deadband is 2.5 units. This parameter must be spleasfi@ positive number. If a deadband parameter
of 0 is specified, this is the same as not providing the deatlaegument. In this case, a deadband limit is not
used. If the deadband parameter is not numeric, or is a negatmber, this will be considered a syntax error.

The client will receive one of the following responses:

e . obj.name MONITORED

e | syntax error

In the case of the Client C-API, receiving a syntax error &haever occur and would be considered an internal error.

4.1.7 Remove a monitor from a directory or data object

Any time a monitor is added to an object in the Status Servexan be removed by initiating a removal request.
Monitors are not automatically removed when an object isoned from the Status Server. The message flow for this
command can be found in figure 6.

UNMONI TOR [NAMVE=] obj _nane
Input parameters for the retrieval command are as follows:

e obj_name- Name of the object. The object name can be specified eitteenasie containing the fully qualified
absolute directory path or as a name containing a relatreetdiry path.

The client will receive one of the following responses:

e . obj.name UNMONITORED
e | syntax error

e ! monitor does not exist

4.1.8 Retrieve monitor updates

The Status Server will send an “out-of-band” notificatiory éime it has monitored information to send to the client.
As mentioned earlier, this notification will be indicated &g asterisk (") in the first column. The full message
will be “* MAIL". At this point, the client will most likely respond with a request to retrieve monitor information.
The Status Server will then send all monitored informatimihte Client followed by an end-of-transmission (EOT)
message indicating that all monitored information has lsee. The full EOT message will be “. EOT". Itis possible
for the Status Server to place additional information fellyg the mailbox and EOT messages perhaps for a comment.
While this will be unused initially by the client API, it mayehuseful to have. For example, when a directory listing is
performed interactively it may be useful to have a commedicating the number of objects returned. The message
flow for this command can be found in figure 11.

PCLL

Version 1.1 Page 21

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

This command does not have any input parameters.

The POLL command will generate individual responses fohaaonitored value which has been modified beyond
the deadband threshold. Once all the individual monitoratgsl have been sent by the Status Server, the client will
receive an end-of-transmission (EOT) message. It is alssiple for the client to send a POLL command and not
receive any response outside of the EOT. This could occumibaitored value changed enough to warrant a monitor
notification (mailbox message), but when the Status Seegsived a POLL from the client, the value was within the
deadband threshold for the last value sent to the client.pbissible responses the client should expect to see are as
follows:

e + obj.name objvalue (New value of a valid object)
+ obj_-name NONEXISTENT (If the object has been removed)
+ obj_-name EXPIRED (If the object has expired)

+ obj.-name UNDEFINED (If the object has not been initialized)

. EOT (following the last updated value)

I nothing monitored by client (if the client requests a PObLt the client does not have any monitors defined
on objects).

The first character of the response indicates what the respoeans. If the first character is a '+’, this indicates that
the value of a monitored object has changed. If thewalhjie is enclosed within double quotes, it is a valid valde. |
not, the state of the Status Server data object is now invalid "+’ character is also used to indicate that at least one
more response will be sent by the Status Server for the POdplierst. Once the client receives the “. EOT” message,
it will know that the Status Server is done sending monitataips. In addition, it is possible for the client to receive

a single-line error response indicating that the clienuested a POLL, but the Status Server does not have any record
of monitored objects for the client.

If the Status Server should detect that the client sent a R@himand without having received a mailbox message, this
will be considered a protocol error and the client will reeed protocol error response. At this point, any subsequent
message received from the client will result in the Status&derminating the client connection. The Client API will
make sure that a POLL command is never sent to the StatusrS@thieut itself having received a mailbox message,
so this should not be an issue with the Client API. This is ddalea safeguard to prevent clients who are directly
using the socket protocol from incorrectly implementing girotocol for monitor retrieval and possibly generating an
excessive number of POLL requests.

4.1.9 Remove an object

Once a successful touch has been performed on an objecpadsssble for the client to initiate a removal request of
the object within the Status Server. The message flow forctismand can be found in figure 6.

RM [NAME=] obj _nane
Input parameters for the object removal command are asifsilo

e obj_name- Name of the object. The object name can be specified eitteenasie containing the fully qualified
absolute directory path or as a name containing a relatieetdiry path.

The client will receive one of the following responses:
e . obj.name NONEXISTENT
e ! syntax error
¢ ! object does not exist

e | permission denied (Would occur if the client did not prewsty perform a touch on the object)

Version 1.1 Page 22

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

4.1.10 Getthe current directory path
Objects within the Status Server can be referenced whethex fully qualified directory path/object name combi-
nation, or a relative path/name combination. In order to aganrelative path references, the current path will be

maintained by the Status Server for each client conneclibis request enables the client to retrieve its current.path
The message flow for this command can be found in figure 6.

PWD

This command does not have any input parameters.

There is really only one response which the client shouleekip see as a result of this command.
e . PWD currentpath (This will be represented as an absolute directory) path

The initial path for each client is '/’. This path will remathe default path until it is changed by the client via the CD
command.

4.1.11 Change the current directory
This request will cause the Status Server to modify whatesuess the current directory for relative path references

made by a client. The client can specify the new current thrgawvith either a relative path or absolute path. The
message flow for this command can be found in figure 6.

CD [PATH=] dir _path
Input parameters for the change directory path commandsdialaws:
e dir _path - New directory path to be used by the Status Server for velgiath references made by this client.
The directory path can be specified either as an absolutepatrelative path offset from the currently defined
relative path.

The client will receive one of the following responses:

e . PWD dirpath (This will be represented as an absolute directory)path
e | syntax error

e ! directory does not exist

4.1.12 Create directory or register intent to remove a diretory

While required directories are automatically created aisqfdhe touch command when objects are created, it is also
possible to explicitly create a directory. This option witeate a directory if it doesn’t already exist.

This command must be used prior to removing a directory ahalf dis contents. When a touch is performed on a
directory, it is possible to remove the directory and all ¢tgects within it without performing an explicit touch on
each object. The message flow for this command can be founglireft.

TOUCHDI R [DI R=] di r _path [COMVENT=di r _conment]
Input parameters for the directory touch command are asvist

Version 1.1 Page 23

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

e dir _path - The directory path can be specified either as an absoluteopatrelative path offset from the current
directory path.

e dir_comment(OPTIONAL) - A description of the directory
The client will receive one of the following responses:

e . dir_path TOUCHED (This will be represented as an absolute dirggtath)

e | syntax error

4.1.13 Remove a directory

Itis possible to remove a directory and all its objects. ldesito help prevent an inadvertent removal of a directory, a
touchdir must be performed on the directory before it carelpeaved. In addition, the directory must not contain any
subdirectories.

RM - R [NAME=] di r _path
Input parameters for the directory removal command arelbsis:

e dir _path - The directory path can be specified either as an absoluteopatrelative path offset from the current
directory path.

The client will receive one of the following responses:

e . dir_path REMOVED

I syntax error

I directory not found

I directory contains subdirectories

I directory contains hidden objects

I permission denied

4.1.14 Retrieve the contents of a directory

Much like the “Is” command on the UNIX file system, it will be ggible to retrieve the contents of a directory. This
command may return more than one line as a response. The wiieneceive a first line indicating whether the
command was successful followed by a sequence of resporisethes contents of the directory. The last line sent
by the server will indicate the end of the transaction. Ofsjand directories will be returned in an ascending ASCII
sort order by name. In addition, this command will allow floe tsame regular expression matching rules used by the
UNIX “Is” command. The message flow for this command can befbin figure 10.

LS [DIR=]dir_path [-1]
Input parameters for the directory retrieval command arfeléswvs:

e dir _path - Target of the directory listing. The target can be speciéiégter as a name containing the fully
qualified absolute directory path or as a name containindagivie directory path. In addition, the target can
contain a regular expression to reduce the list of contetdsmed. An example would be “LS /fits/6333330/a*".

Version 1.1 Page 24

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

e -| (OPTIONAL) - This parameter will indicate that the direatdisting will return the update time, expiration
time, and comment as well in addition to the default fields.

The LS commend will generates a sequence of replies. Uppomss to the initial LS request, the Status Server will
send one of the following responses:

e + directory target information (Header line echoing backltkting request by the user)
e | syntax error

e ! directory does not exist

If the client received a positive response to the listinguesi, the Status Server will generate individual responses
for each object or subdirectory which matches the queryesgguSubdirectories can be differentiated from objects

by the trailing '/'. Once all the contents of the directorywbaeen sent by the Status Server, the client will receive
an end-of-transmission (EOT) message. The possible respdhe client should expect following a successful LS

request are:

e + {object name or directory narhgvalue}

e + {object name or directory narhdvalue} {update timé {expiration timg {commen} (This would only be
returned if the user chooses the “-I” option)

e .EOT

In the case of a full listing, the Status Server will attenpfdrmat it in a readable format, so each category is left
aligned in a column. Strings representing the update tindeeapiration time will be expressed using the dd-mmm-
yyyy h24:mm:ss format. A directory will be considered nothtave a value and will be represented with the string
“DIRECTORY”. Data objects which have a valid value will hatre returned value enclosed within double quotes.
Invalid values will be expressed without quotes and cantheeUNDEFINED or EXPIRED. Any data objects which
were created, but have a value of NONEXISTENT will not be med¢al as part of the directory listing.

4.1.15 Initiate a trace

For diagnostic purposes, it may be important to have a maalee view of what is happening within the Status
Server. This may help solve an issue with the way the StatneBis working or help diagnose a misbehaving client.

Trace information will be stored as debug information wittlie CFHT log. As a result, it will be possible to associate
activity within the Status Server with external events tiphéentify and narrow down problems. The message flow
for this command can be found in figure 6.

TRACE ON

This command does not have any input parameters

The client should receive the following response:

e . TRACE ON

Version 1.1 Page 25

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

4.1.16 Stop atrace

Once a trace is initiated, a client request must be perfortmetbp it. The message flow for this command can be
found in figure 6.

TRACE OFF
This command does not have any input parameters
The client should receive the following response:

e . TRACE OFF

4.1.17 Serialize Status Server data to a file

The Status Server will serialize a copy of itself to disk amgtit receives a message from a client, or if the 10 minute
interval has expired. The only information which will be sehis the data associated with the structure used to hold
the Status Server objects. It is important to note that mdfon associated with client connections will not be saved
as part of the serialization process. This is because ahttionnections will be lost as part of a Status Server ftestar
and restore operation. The message flow for this commandec&ubd in figure 6.

AUTCSAVE

This command does not have any input parameters
The client should receive the following response:

e .AUTOSAVE INITIATED

The Status Server will send a response prior to the initiadifcthe forked process to perform the serialization. This is
done in order to limit the complexity required to send a treteim value as a result of the serialization operation in the
forked process. If the serialization should fail, detalgarding the failure should be available in the CFHT log. As a
result, if a client actively chooses to initiate a seridii@a request, he/she should check to make sure the setiatiza
file was successfully written.

4.1.18 Shutdown the Status Server

For maintenance reasons, it may be necessary to shutdov@tahes Server. In order to preserve the current state
of information within the server, a copy of the Status Semé&rmation will be serialized to disk before an exit is
performed. The message flow for this command can be foundunefig

SHUTDOWN
This command does not have any input parameters and willerargte a response outside of the EOF sent across the

interface indicating that the socket connection was cldseithe server.

4.1.19 Protocol Error

At some point, the client may believe that the Status Serasicbmmitted a protocol error violation. If this is detected
by the Client API, it will send a “PROTOCOL ERROR” messagette Status Server. Once the Status Server receives
this message, it will log error information to the CFHT logdaerminate the client connection. Figure 9 contains a
sample of a client detected protocol error.

PROTOCCL ERROR

This command does not have any input parameters and willerargte a response outside of the EOF sent across the
interface to the client indicating that its connection wixsed by the server.

Version 1.1 Page 26

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5 Client C API

This section outlines the available functions within the Bl for clients to interact with the Status Server. More dstai
regarding the functionality provided by the client APl i®pided in the subsequent APl Reference section.

5.1 API Reference
5.1.1 Access the Status Server

The client will initiate a connection request to the StatasvBr. For traceability purposes, the Client API will send a
subsequent message with the UNIX Process ID and program.nafinen a client chooses to establish a connection
with the Status Server, it must decide whether the Clientgkluld automatically try to re-establish a connection to
the Status Server if the connection is broken and whetheclkestimeout threshold is desired.

A predefined socket timeout threshold will be defined as platti@ Client API. This threshold can be modified by
setting a new timeout value via the timeout parameter. # fl@rameter is less than or equal to 0, the system default
will be used. Otherwise, the new value will be used for th&kebtimeout. The timeout must be specified in seconds.

Itis possible for the socket connection between the Clidpitand Status Server to go down unexpectedly. The Client
API will provide the option to retry until the connection is-established. If the retry option is used, the client progr
will be blocked until the socket connection is re-estaldishAny time the Client API retries the connection, it will
resend all “touch”, “touchdir” and “monitor” commands prio processing the current API call. When the rgtiguse
parameter is set to a value greater than or equal to 0, autoreabnnection is turned on. If this value is less than 0,
automatic reconnection is turned off. In addition, theyrgtause indicates the number of seconds the Client AP will
wait to initiate another connection to the Status Server.

The return value from the API call will indicate whether thgeoation was successful. If the call should happen to fail,
more details regarding the failure will be available in céntno.

PASSFAI L ssLogon(const char *program nane,
const int tinmeout,
const int retry_pause)

In addition, the client has the option of setting up clieritia@ck functions with the C API for the case where a timeout
of the socket occurs or when the socket connection betwes@libnt API and Status Server goes down unexpectedly.
If automatic reconnection is enabled, the client callbamidisconnection should never be called. Instead a function
within the the Client API will be called to initiate a retry.

voi d ssRetryCal | back(ss_cal | back_func retry_fn)

voi d ssDi scCal | back(ss_di sc_func disc_fn)

5.1.2 Disconnect from the Status Server

The C API will disconnect from the Status Server by closirggbcket. As part of the disconnect, the Client APl must
clean up internal resources associated with the StatugSesanection. This is also true for the case where the client
detects that the client connection with the Status Serv&bban broken. When using the C API, a disconnect request
should not fail unless a client connection isn’t availabifehe call should happen to fail, more details regarding the
failure will be available in cfhierrno.

If the client makes a call to ssLogoff, this will not cause ghomatic retry mechanism to trigger. A connection to the
Status Server must be subsequently established with areath& ssLogon.

PASSFAI L ssLogof f (voi d)

Version 1.1 Page 27

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5.1.3 Create an object or register the intent to modify an obgct

The client must specify the name of the object and optionglgcify a comment or lifetime. If a lifetime is not
specified, the value of the object will not expire. When ugimgC API, there should not be any cases where a touch
would fail.

voi d ssTouchObj ect (const char *nane,
const char *conmment,
const int *lifetine)

5.1.4 Update an object

The client has the ability to update Status Server objedtseofollowing types:

e String - Strings can consist of a sequence of 8 bit ASCII charactérsthe exception of the NULL character.

The NULL character will be used to terminate the string.

e Boolean- Data type consisting of two possible values; either TRUEAILSE.

e Floating Point - Double precision floating point number.

e Integer - Signed integer number.
Clients using a telnet session will send all data as striogssa the socket interface. This is the same way data is sent
to the Status Server by the Client API. In order to supportthiéty to handle 8 bit ASCII characters within a string,
the string is encoded into 7 bit ASCII printable charactgrte Client API prior to being sent across the interface. In

addition, boolean, floating point, and integer data is caeelto a string prior to being sent to the Status Server.df th
call should happen to fail, more details regarding the failwill be available in cfthierrno.

PASSFAI L ssPut I nt(const char *nane,
const int val ue)

PASSFAI L ssPut Doubl e(const char *nane,
const doubl e val ue)

PASSFAI L ssPut String(const char *nane,
const char *val ue)

PASSFAI L ssPut Bool ean(const char *nane,
const BOOLEAN val ue)

5.1.5 Retrieve an object
The client will make a request to retrieve the value of an cibjé the request is successful, the value of the Status
Server object will be converted from it's encoded stringrat to the type requested via the C API call. This value

will then be stored in the address specified by the user. Ifébgaest is not successful, the details regarding the error
will be stored in cfhterrno.

PASSFAI L ssGet I nt(const char *nane,
int *val ue)

PASSFAI L ssCGet Doubl e(const char *nane,

Version 1.1 Page 28

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

doubl e *val ue)

PASSFAI L ssCet String(const char *nane,
char *val ue)

PASSFAI L ssGet Bool ean(const char *nane,
BOOLEAN *val ue)

5.1.6 Check for the existence and status of an object

For clients using the C API, the status of the object will b@el in a memory location specified by the user. If the
call should happen to fail, more details regarding the failwill be available in cfthierrno.

PASSFAI L ssStat (const char *nane,
ss_stat _t *status)

5.1.7 Initiate a monitor on an object

The client has the option of placing a monitor on any obje¢hwiptional age and deadband values. If deadband
and/or deadband are not desired, it can be set to 0. Thisaitedithe client would like to monitor each change to an
object value. When monitors are applied using the C API tigran address must be supplied for both the monitored
object value as well as the return code. The return code esdnd server to notify a client whenever the state of an
object changes. As a result, the client can be informed whexbgect becomes expired, NULL, or removed.

Once the client is informed that a monitor was successfydpliad, the Client API will store an association between
the name of the object and the value and return value ad@rizssbe object. The Client API can then process monitor
update notification messages and store the value and reddes @n the proper memory locations for subsequent use
by the client. If the call should happen to fail, more dete#igarding the failure will be available in cfletrno.

PASSFAI L ssMonitorlnt(const char *nane,
const int deadband,
const int age,
int *val ue,
ss ret_t *val ue_status)

PASSFAI L ssMbni t or Doubl e(const char *nane,
const doubl e deadband,
const int age,
doubl e *val ue,
ss ret _t *val ue_status)

PASSFAI L ssMbnitor String(const char *nane,
const size_t nmax_|length,
const int age,
char *val ue,
ss_ret_t *val ue_status)

PASSFAI L ssMbni t or Bool ean(const char *nane,
const int age,
BOOLEAN *val ue,
ss ret _t *val ue_status)

Version 1.1 Page 29

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5.1.8 Remove a monitor from an object

The client will initiate the object removal request and ddqarocess the return value. If the call should happen to fail
more details regarding the failure will be available in céntno.

ss ret _t ssKill Mnitor(const char *nane)

5.1.9 Retrieve monitor updates

The client will initiate the monitor retrieval request andishbe prepared to process the return information sent by the
Status Server. The client will process each line of datd iiméceives the end-of-transaction indicator.

For clients using the C API, each line of monitored data wéldonverted and stored in the memory location which was
previously defined during the setup of the monitor. Intefleating point, and boolean data types will be converted
from the string format received over the interface to the itoonequested data type. Any errors detected, either durin
the conversion process or from the data response sent byahes Server, will be stored in the previously allocated
memory location for return code information. From the C ABirp of view, this call should not fail unless a client
connection is not available. When using the C API, there khoot be any cases where a “poll” would fail.

void ssPol | (voi d)

5.1.10 Remove an object

The client will initiate the removal request and should ¢hie return value to determine whether the operation was
successful. If the call should happen to fail, more detaggrding the failure will be available in cfletrno.

PASSFAI L ssRenove(const char *nane)

5.1.11 Getthe current directory path

The client will initiate the current directory request amteive a pointer to a string containing the directory path.
When using the C API, there should not be any cases where aseguetrieve the current directory path would fail.

char *ssPwd(voi d)

5.1.12 Change the current directory

The client will initiate the change current directory requand should check the return value to determine whether
the operation was successful. If the call should happenilianfare details regarding the failure will be available in
cfhterrno.

PASSFAI L ssChdi r (const char *path)

5.1.13 Create directory or register intent to remove a diretory

Prior to removing a directory and its contents the clienttpesform a “touchdir” on the directory. The “touchdir” also
enables a client to create the directory if it doesn't alyeexist and to alter the comment associated with a directory.
When using the C API, there should not be any cases where hdweould fail.

voi d ssTouchDir(const char *path,
const char *comment)

Version 1.1 Page 30

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5.1.14 Remove a directory
The client will initiate the directory removal request arttbsld check the return value to determine whether the

operation was successful. If the call should happen to fiadre details regarding the failure will be available in
cfhterrno.

PASSFAI L ssRndi r (const char *path)

5.1.15 Retrieve the contents of a directory

The client will initiate the directory content retrievalqgest and must be prepared to process the return information
sent by the Status Server. The client will process each i until it receives the end of message indicator.

When using the C API, the client will first make a request torofiee directory. The directory can be opened with
a recursive option indicating that all underlying contewtl be returned as part of the request. The return value
from the ssOpendir call will indicate whether the directonuld successfully be opened. The client must then call
ssReaddir until it receives a NULL indicating that all theaditory contents have been returned. Directory contertits wi
be returned in an Object Name=Value and Dir=Name formatekample, /i/cfh12k/etype="FLAT". If the ssOpendir
call should happen to fail, more details regarding the failwill be available in cfhierrno.

PASSFAI L ssOpendir (const char *path)

char *ssReaddir(voi d)

5.1.16 Initiate a trace

The client can initiate a trace on all Status Server actiWitien using the C API, there should not be any cases where
a trace initiation request would fail.

voi d ssTraceOn(voi d)

5.1.17 Stop atrace
A client can stop a trace currently running in the Status &eivhen using the C API, there should not be any cases

where a request to stop a trace would fail. If a trace was moting and a request was made to stop a trace, the Status
Server will still send back a positive response.

void ssTraceO f (voi d)

5.1.18 Serialize Status Server data to a file

A client can request that the Status Server serialize iteedf file. When using the C API, there should not be any
cases where a serialization request would fail. It is pdssiiat the serialization itself might fail, but the Staties\&r
does not send a response back to the client once the Sdi@limmcompleted. Instead, it sends back a response once
it receives a request to initiate serialization.

voi d ssAut osave(voi d)

Version 1.1 Page 31

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

5.1.19 Shutdown the Status Server

The client can request a shutdown of the Status Server. Whidibn will return once the message is sent to the Status
Server.

voi d ssShut down(voi d)

6 Software Design

This section provides the design details of the Status &eivéhis point, the document only covers the data structure
and software components which make up the Status Serveer&yp of the Client API will be added to this document
soon.

6.1 Status Server Data Structures

There are several key data structures used to hold StatuerSata. Figure 13 illustrates the data structures used by
the Status Server. The lines within the figure illustrate hiogvdata is structured and the relationships between data
structures. Each data structure is explained in more dettik following sections.

node_info_t Linked list of time dependent node objects client_info_t
name ‘node_info_t @ node_info_t@ node_info_k' ‘ node_info_l_t prg_name
comment pid
value ip_address
value_state hostname
full_name - - : . login_ts

- parent Linked list of client objects current_path
creation_ts ‘client_info_t @ client_info_t @ client_info_t‘ . + cIient_info_t‘ !s_m.box_em‘p.ty
update_ts is_client_notified
lifetime is_monitor_in_prog
touch_list ———— Linked list of node objects Eolrs"t?r:_glg
rr:]oodn?t_ollrs_tlist S ‘node_info_t @ node_info_t@ node_info_k' ‘ node_infoit Is_ptr
Is_list r touch_list

 Is_list
Linked list of monitor objects | monitor_list
‘mon_info_t @ mon_info_t @ mon_info_t‘ : ‘ mon_info_t‘ J

NOTE: Although the node, client and monitor list boxes may have
more than one object pointing to them, they are separate lists in
the actual implementation.

is_protocol_error

mon_info_t

object
client
prev_sent_value
prev_sent_ts
deadband
creation_ts

Figure 13: Status Server Data Structures

Version 1.1 Page 32

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.1.1 Client Connection Data (clientinfo_t)

The sockio library will manage the low-level socket detadsociated with the client-server socket connection. At a
higher level, this data structure will be used to manageuStaerver information associated with each client connec-
tion.

typedef struct {
char *prg_nane;
pid_t pid;
unsi gned_char i p_address[4];
char *host nane;
time_t login_ts;
char *current _path;
BOOLEAN i s_nbox_enpty;
BOOLEAN i s _client _notified,
BOOLEAN i s_nonitor_in_prog;
mon_info t *nmonitor _ptr;
BOOLEAN i s |s_in_prog;
mon_info_t *ls_ptr;
linked |ist *touch_ list;
linked list *Is |ist;
linked |ist *nonitor |ist;
BOOLEAN i s_protocol _error;
} client_info_t;

More details regarding each of the fields in the cligrib_t structure can be found in figure 14.

6.1.2 Directory and Object Data (nodeinfo _t)

This section outlines the data structure used to define titaSBerver directory hierarchy and store object data. Each
node within the Status Server hierarchical structure isrilesd by a nodénfo_t structure. A single data structure is
used to hold either object data or directory data since bottertypes have very similar data requirements. The data
stored within the nod@nfo_t data structure will be object data if the nalil is set to NULL. If the noddist field

is not set to NULL, the data stored in the nodéo_t data structure will be directory data. When the ndideis not

null, it is possible for a directory to have both subdireEsiand/or objects associated with the directory. Thaitifet

and monitotlist fields within the data structure are data object speaifid will not apply to directory data. If it is
subsequently determined that placing a monitor on a ding@saiseful, the value and monitdists could be used for
this purpose.

The value field within the nodfo_t structure will contain valid data or an indication of whyettalue is not valid.
Valid values will always be enclosed within double quotéhé value of an object is not valid, it will not be enclosed
within double quotes. For example, the following values lddae considered valid: “data”, “0.0”, or “sample data”.
If a value is not enclosed within double quotes, it must akvhg one of the following values: NONEXISTENT,
UNDEFINED, or EXPIRED in the case of a data object. Dire@smill always contain the string “DIRECTORY” in
the value field.

It is possible for a data object to have NONEXISTENT popuddtethe value field. While it may seem strange to
define a data object with a state indicating that it doesn&tethis is used to support the ability to apply a monitor on a
data object which has not been created. In this case, theeddlirectories to hold the data object will be created and
the data object will be created with a NONEXISTENT value. A®sult, it will become possible to define pointers
between a monitor and the object being monitored. If a subs#dtouch” request is made to a data object, the value
of the data object will no longer indicate NONEXISTENT.

In addition to storing the state of a directory or data obijecthe value field, the valustate field contains an enumer-
ated type indicating the state of an object. This field is ddde=nable more efficient state comparisons.

Version 1.1 Page 33

Canada-France-Hawaii Telescope Corp.

Field

Default

Description

prg.name

“UNKNOWN”

The name of the client program interacting with the Status&e For
clients using the C-API, this should correspond to argv[lle program
name is provided through the “register” command.

pid

The UNIX Process ID (PID) of the client program interactinghathe
Status Server. This will automatically be provided to that&t Server
for clients using the C-API. The PID is provided through thegister”
command.

ip_address

Client IP address

The remote IP address of the client.

hostname

Client Hostname

The hostname of the client.

login_ts

Connect Time

Time a client connection was established with the StatugeBei his
is expressed as the number of seconds elapsed since OOfu6%)
GMT, January 1, 1970.

currentpath

u/n

The current path prepended to relative path referencesjetistor di-
rectories. The value of this field can be changed by using €&"“
command.

is_-mboxempty

TRUE

Boolean flag indicating whether there any monitoring naiiens to
be sent to this client. TRUE if a monitoring notifications rhbs sent.
FALSE if a monitoring notification does not need to be sent.

is_client.notified

FALSE

Boolean flag indicating whether the Status Server has nittie client
that it has monitor updates to retrieve. TRUE if the cliens haen
nofified. FALSE if the client has not been notified.

is_monitorin_prog

FALSE

Boolean flag indicating whether the Status Server is cugreending
monitor updates to this client. TRUE if monitor updates arpriogress,
FALSE if monitor updates are not in progress.

monitor_ptr

NULL

Pointer to the next monitor object within the monil@t which must be
checked to determine if it is eligible to be sent to the clierd monitor
update message. If the clientis not currently retrievingitoo updates,
this field will be set to NULL.

is_Is_in_prog

FALSE

Boolean flag indicating whether the Status Server is cugreending
directory contents to this client. TRUE if the directory temts are
being sent. FALSE if directory contents are not being sent.

Is_ptr

NULL

Pointer to the next directory listing response within thdids which
must be sent to the client. If the client is not currentlyissting direc-
tory listing data, this field will be set to NULL.

touchlist

NULL

Linked list of directories and data objects which this didas per-
formed a “touchdir” or “touch” on. If the client has not perfoed a
“touchdir” or “touch” on any directories or data objectse ttouchlist

pointer will be NULL.

Is_list

NULL

Linked list of directory listing responses to be sent to thent during
a directory listing request.

monitor.list

NULL

Linked list of monitor objects. If this client is not monifag any Status
Server Objects, the monitdist pointer will be NULL.

is_protocolerror

FALSE

This flag will be set if the client ever sends an out-of-seqgerom-
mand violating the Status Server protocol. At this poing Btatus
Server expects the client to close its connection. Howéf/dre con-
nection is not closed and another request is received, HiasSEerver
will close the connection. TRUE if a protocol error has oezurFALSE
if a protocol error has not occured.

Version 1.1

Figure 14: Description of Fields within Client Data Strueu

Page 34

Status Server Detailed Design

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

When the Status Server is initialized, it will contain onlyeodirectory node, which is that of the root directory. Much
like the UNIX file system, the root directory is described bsirgle forward slash '/’. Additional directories will be
created when the Status Server receives client “touchtchdir”, or “monitor” requests.

Data object nodes are created when a client either initeatésuch” or “monitor” request. As previously mentioned,
a data object will use the value, lifetime, and moniist fields within the node structure.

In the case of either a directory or object data, a node wiit@im a pointer to its parent. In the case of a directory, this
will always be the parent directory. The root node of theawey is a special case and will have the parent pointer set

to itself. Data objects will always point to the directoryiaimhas the linked list containing a pointer to the data abjec
itself.

typedef struct {
char *nane;
char *comment;
char val ue[MAX_VALUE_SI ZE] ;
node state t val ue_state;
char *full _nane;
node_info t *parent;
tinme_t creation_ts;
tinme_t update_ts;
tinme_t lifetine;
linked |ist *touch_list;
linked |ist *node_list;
linked |ist *nonitor_|ist;
linked list *Is_|ist;

} node_info_t;

typedef enum {
SS_NONEXI STENT,
SS_NOTDEFI NED,
SS_EXPI RED,
SS VALI D

} node_state t;

More details regarding each of the fields in the nadfe_t structure can be found in figure 15.

6.1.3 Monitoring Data (mon.info_t)

This section outlines the data structure used to store wramitinformation for a client based on modifications to an
object. The information within the monitoring data struetis essentially a bridge between a client and data object.
Whenever a client requests a monitor to be placed on an ohijecobject will be created if it didn't already exist,
before the monitor object is created. Once the monitor aljexreated, a pointer to the object will be stored within the
monitor lists of both the client object and data object bemgnitored. If a client disconnects from the Status Server,
the monitoring objects and monitor object reference wiltd@oved before the client object is removed.

typedef struct {
node_info_t *object;
client _info_ t *client;
char prev_sent val ue[MAX VALUE_SI ZE] ;
time_t prev_sent_ts;
doubl e deadband;

Version 1.1 Page 35

Canada-France-Hawaii Telescope Corp.

Status Server Detailed Design

Field Default Description
name directory or object name The name of the directory or data object represented astaveateame
with respect to its parent directory.
comment | Commentor NULL Descriptive comment of this directory or object. If a comrmisnnot
supplied by the client, it will be set to NULL.
value NONEXISTENT or NOT-| The value of a data object or directory. This field will eitlemmtain
DEFINED for a data object| valid data which is enclosed with double quotes or a strimlicating
A valid value for a directory| why the field is not valid. For a directory object this field hdlways
contain a valid value enclosed in double quotes. For a dgecbthis
field will either contain valid data or NONEXISTENT, NOTDBWRED,
or EXPIRED.
valuestate | SSNONEXISTENT, An enumerated type which defines the state of the object ecidiry.
SSVALID, or | This information can also be determined from the value fibid,the
SSNOTDEFINED enumerated type provides a more efficient means of identjftfie state|
of an object. Directories will always be created with a vastete of
SSVALID. Data objects will be created as either S®ONEXISTENT
or SSNOTDEFINED.
full_name | absolute path Fully qualified path of the directory or data object. Thishailvays be
expressed in absolute terms starting at the root direct6iy (
parent parent node or itself In the case of a directory or data object, this field will paothe parent
directory object. In the case of the root directory objéuis field will
point back to itself.
creationts | creation time Time the directory or data object is created in the StatuseBeiThis
is expressed as the number of seconds elapsed since OOHuEK)
GMT, January 1, 1970.
updatets update time Time the directory or data object is last updated in the St&terver.
This field is only updated when the state or value of an objeahges.
The first updates will be set to the time the object is created. T
is expressed as the number of seconds elapsed since OOHEK)
GMT, January 1, 1970.
lifetime lifetime or O Number of seconds following each update which the objedteiton-
sidered valid. If a lifetime was not provided by the cliettyill be set
to O.
touchlist empty list Linked list of clients which have performed a “touch” on thlisectory
or data object.
nodelist NULL or empty list A linked list of pointers to directory and data objects. Thss$ will
only be used for directory objects. With data objects, thaklfivill be
NULL.
monitor.list | empty list A linked list of pointers to monitor objects placed on a ddtgeot. This
list will only be used for data objects.
Is_list empty list A linked list of pointers to monitor objects used to returrediory and

data object information.

h

Figure 15: Description of Fields within the Directory andt®®bject Structure

tinme_t creation_ts;
} non_info t;

More details regarding each of the fields in the miofo_t structure can be found in figure 16.

Version 1.1

Page 36

S

Canada-France-Hawaii Telescope Corp.

Field Default Description

object pointer to object| A pointer to the data object which is being monitored (node_t).

client pointer to client | A pointer to the client data structure (clieintfo_t).

prevsentvalue | UNSPECIFIED | The previous value of the object sent to the client. When tbeitaring
object is initially defined, it will be set to UNSPECIFIED.

prev.sentts 0 Time when the client was last sent a monitoring update. Whemton-
itoring object is initially defined, it will be set to 0. This expressed a
the number of seconds elapsed since 00:00:00 hours, GMUadaf,
1970.

deadband deadband or 0.0 Deadband value specified by the client. If a deadband is remifsgd,
it will be set to 0.0.

creationts creation time Time the monitoring object was created in the Status SerVhris is

expressed as the number of seconds elapsed since 00:00r80@GMT,
January 1, 1970.

Figure 16: Description of Fields within Monitoring Data Stture

6.2 Status Server Software Components

The Status Server is broken in a set of components illustiatégure 17. A brief description of each of the compo-

nents follows with a more in depth description availablenia following sections.

[

Socket Library
(libsockio)
Message Handler)

Data

Services] [

Monitor Client Time Dependent
Services Services Services

N N 7Y

Utility Functions)

Figure 17: Status Server Software Components

e Socket Library - The socket I/O library to handle the low-level socket dstai

e Message Handler- Processes the messages sent from the Client and handlessgoyse which must be sent

back to the client.

e Data Services Provides functions to manage the directory and data objaatture (nodénfo_t).

e Monitor Services - Provides functions to manage the monitoring data stregmoninfo_t).

e Client Services- Provides functions to manage the client data structuren(cinfo_t).

e Time Dependent Services Provides functions to manage a list of data objects whicke lsatime dependency
based on a non-zero lifetime.

e Utility Functions - Provides a set of utility functions shared among the St&arser components.

6.2.1 Message Handling Services

This component interacts closely with libsockio, and wét sip the following callback routines to be called by lib-

sockio.

Version 1.1

Page 37

Status Server Detailed Design

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

e clientaddhook() - Called whenever a new client is connecting to theuSt&erver. This routine will check
to make sure the client is connecting from a valid IP addrd® IP address must be 127.*, 128.171.80.%,
or 128.171.83.*. If a client attempts to connect from an lidvaddress, the connection will be refused. If
the connection is successful, the message handler willticalcreateClient() routine in the Client Services
component to create a client data structure and return thistsre to libsockio to associate with the socket
connection.

e clientdelhook() - Called whenever an end-of-file or error conditioowrs with a client. The message handler
will call the removeClient() routine in the Client Serviceemponent to clean up monitors associated with this
client and all other client specific data.

e clientrecv_hook() - Called whenever the client has sent a message toolcegmed. The message handler will
parse the message and will call the appropriate service opemis to process the message. Once the message
is processed, the message handler will send the approp&tense back to the client.

e clientsendhook() - Called whenever the output buffers are empty in thseclient wishes to send an asyn-
chronous message to the client. The message handler, viassesutines, will check if a mailbox message,
monitor information, or directory listing data is ready t® $ent to the client.

This is the main component of the Status Server and it ie#iatl the message processing done by the Status Server.
In addition, it contains main() and sets up the sockio lipialls to initiate and manage the server socket connection.
The message handler also handles a reload of the Status 8emeserialized data. The Status Server will save it's
internal state via a set of messages similar to the messagebysa client. As a result, restoring the Status Server is
simply a process of replaying a set of previously sent tretieas.

The main() function within the message handler will set up ¢bmmands which manage the interaction with the
sockio library. An example of a code segment which could e manage the socket communications via the
sockio library is as follows:

int main(int argc, const char *argv[])

{

sockserv_t *statserv = sockserv_create(port #);

/* Check if the socket could be created successfully */
if (!statserv)
exi t (EXI T_FAI LURE) ;

/* Set up the callback functions */
statserv->client _recv_hook = client_recv_hook;
statserv->client_del hook = client _del hook;
statserv->client_add hook = client_add _hook;
statserv->client_send _hook = client_send_hook;

/* Set up an infinite loop to manage the socket comunication */

for (;;) {

/* Service all tine dependent objects */
servi ceTi neDepObj ect s(voi d);

/* Continue calling sockserv_run with a tineout */
/* value of zero if it returns a positive return */
/* value. This indicates that sonething was */
/* received or sent during the last iteration. */
whi |l e (sockserv_run(statserv, 0) >0) { ; }

Version 1.1 Page 38

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

/* Call sockserv_run with a tineout interval */
/* corresponding to when the next tine dependent */
/* object should expire. */
sockserv_run(statserv, getM nimunili mout I nterval () * 100);
}
exit(0);

}

The message handler will handle each Client request angppsnsible for writing a response to sockio buffer provided
by the clientrecv_hook() and clientsendhook() callback functions.

When a request is received from a client, it will be checkechédke sure it is a valid URL formatted string. If so, the
first argument will parsed and checked against the set of kremwnmands. If it is recognized as a legal command,
it will be processed according to the type of command it iscieaf the following sections provides a brief overview
of the processing performed for each command and the iilitgtions within the other software components which
will be called. Most of the functionality has been descrilasdthe pseudocode processing which occurs when each
command is received by the Status Server.

6.2.1.1 Register Client with the Status Server

The pseudocode processing for how a client “register” retjgéhandled is as follows:

if (register nessage not valid) {
wite a syntax error nmessage to the sockio buffer
return

}

update the client object with updateCient()
wite a positive response to the sockio buffer

6.2.1.2 Disconnect from the Status Server

The pseudocode processing for how a client “logoff” reqisebindled is as follows:

call the client\ _del\ _hook call back function
wite an enpty string (buf[0] = '\0") to the sockio buffer

6.2.1.3 Create an object or register the intent to modify an bject

The pseudocode processing for how a client “touch” reqedsandled is as follows:

i f (touch nessage not valid) {
wite a syntax error nessage to the sockio buffer

return
}
/* Try to create/retrieve the object fromthe hierarchy. */
/* The create paranmeter to getCbject() nust be set to TRUE */
/* and the create_valid paraneter nust be set to TRUE. */

if (getObject() == NULL) {
Status Server internal error

Version 1.1 Page 39

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

wite a negative response to the sockio buffer

return

}

el se {
if alifetime was specified, set it with setObjectLifetine()
if a coment was specified, set it with set NodeComent ()

}

add the data object to the client touch list using addTouchNode()
wite a positive response to the sockio buffer

6.2.1.4 Update an object

The pseudocode processing for how a client “put” requestiglled is as follows:

if (put nessage not valid) {
wite a syntax error nessage to the sockio buffer
return

}

[* Try to retrieve the object fromthe hierarchy. Both */

/* The create paranmeter and create_valid paraneters nust */

/* be set to false in the call to getObject(). */

if (getObject() == NULL) {
wite object does not exist error response to the sockio buffer
return

}

/* Check if the object was previously created, but has a */

/* val ue of NONEXI STENT */

i f (isNodeNonexistent() == TRUE) {
wite object does not exist error response to the sockio buffer
return

}

/* Check to see if this object is within the list of */

/* objects the client has perforned a ‘‘touch’’ on */

i f (touchNodePerforned() == FALSE) {
wite perm ssion denied error response to the sockio buffer
return

}

Update the val ue of the object with setObjectVal ue()
wite a positive response to the sockio buffer

The pseudocode processing is slightly different than the fiagram for an update in the current Functional Speci-
fication document. In this design, the Status Server wilbglstraverse the directory and data object hierarchy in an
attempt to find the data object and from there determine itlieat has performed a touch. This is a simpler and more
efficient implementation than checking the touit associated with the client object first to see if the obfeas been
touched by the client. This would not be the case if all cliemguests were expressed in terms of an absolute path.
However, by traversing the directory and data object hédnait is possible to resolve the path of the object on the fly
instead of converting the path string to absolute path, ffig@i string match on the absolute path name in the client
object touchlist and then referencing the data object. As a result, tiser@sponse that a client may see is that the

Version 1.1 Page 40

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

data object does not exist. Only if the object exists is itgtale for the client to receive a natification that it has not
performed a touch on the data object.

6.2.1.5 Retrieve an object

The pseudocode processing for how a client “get” requestnsiled is as follows:

if (get nessage not valid) {
wite a syntax error nmessage to the sockio buffer
return

}

[* Try to retrieve the object fromthe hierarchy. Both */
/* The create paranmeter and create_valid paraneters nust */
/* be set to false in the call to getObject(). */
if (getObject() == NULL) {
wite object does not exist error response to the sockio buffer

}
el se {

wite positive data object val ue response to the sockio buffer
}

6.2.1.6 Initiate a monitor on an object

The pseudocode processing for how a client monitoring retgjgdandled is as follows:

if (nonitor nmessage not valid) {
wite a syntax error nessage to the sockio buffer

return
}
/* Try to create/retrieve the object fromthe hierarchy. */
/* The create paranmeter to getCbject() nust be set to TRUE */
/* and the create_valid paraneter nust be set to FALSE. */

if (getObject() == NULL) {
Status Server internal error
wite a negative response to the sockio buffer
return

/* Check to see if a nmonitor already exists on that */
/* object for the requesting client */
if (getMnitorByCient() == NULL) {

/* Check to nake sure the nonitoring object could */
/* be successfully created. */
if (createMonitor() == PASS) {
wite a positive response to the sockio buffer.
return
}
el se {
Status Server internal error

Version 1.1 Page 41

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

wite a negative response to the socki o buffer.

return
}
}
el se {
Updat e the deadband for a nonitor w th updateMonitorDeadband()
}

wite a positive response to the sockio buffer.

6.2.1.7 Remove a monitor from an object

The pseudocode processing for how a monitor will be remokad fan object:

i f (unnonitor nessage not valid) {
wite a syntax error nessage to the sockio buffer
return

}

/[* Try to retrieve the object fromthe hierarchy. Both */

/* the create paraneter and create_valid paraneters nust */

/* be set to false in the call to getObject(). |If the */

/* object does not exist, the nonitor also won't exist */

/* since an object can not be renmoved while it is being */

/* nonitored. */

if (getObject() == NULL) {
wite a nonitor does not exist error response to the socki o buffer.
return

}

/* Check to see if a nmonitor already exists on that */

/* object for the requesting client */

if (getMnitorByCient() == NULL) {
wite a nonitor does not exist error response to the sockio buffer.
return

}

/* Renmove the nmonitoring record. */
if (removeMonitor() == FAIL) {
wite an internal error response to the sockio buffer

}
el se {

wite a positive response to the sockio buffer.
}

6.2.1.8 Retrieve monitor updates

There are two stages where monitor retrievals occur. FErdtaé processing of the monitoring request, and second is
the handling of the monitor responses. In the first stagepitheessing is triggered by a call to the cligatv.hook().

In the second stage, the processing is triggered by repeallsdo the clientsendhook(). At most, only one message
can be sent to the client with each clis@ndhook() callback function call. As a result, if the client nhbg notified

of many monitor updates, the clieaéndhook() will be called multiple times.

The pseudocode processing for how a client “poll” requelaisdled is as follows:

Version 1.1 Page 42

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

STAGE 1: Processing initiated when a ‘‘poll’’ request is received.

/* Check to see if the client was sent a nmil box nmessage. */

/* If not, this would be considered a protocol error, */
/* since the client should not be sending a ‘‘poll’’ */
/* request without first being inforned with a mail box */

/* nmessage. */
i f (wasMail boxMsgSent ToCl i ent == FALSE) {
wite a protocol error nessage to the sockio buffer
mark the client object to indicate that a protocol error was sent

return
}
/* Set up the client object fields to indicate that a */
/* nonitor request is in progress. This function should */
/* only fail if the client does not have any nonitors */

/* defined. */
if (setMnitorlnProgress() == FAIL) {
wite a nothing nonitored by client error nessage to the sockio buffer

return
}
el se {

Call checkSendMonitor() to send nonitoring data to the client
}

STAGE 2: Processing initiated each tine the client receives a
client_send_hook() callback function call

/* Check to see if nmonitoring data nust be sent to the client */
checkSendMbni t or ()

It is important to note that the processing of a directoryrigsand monitor retrieval is very similar since each case
requires an iteration through a list of monitor objects. Assult, it is possible to reuse much of the same code.

6.2.1.9 Remove an object

The pseudocode processing for how a client object remogakes is handled is as follows:

if (rmnessage not valid) {
wite a syntax error nessage to the sockio buffer
return

}

[* Try to retrieve the object fromthe hierarchy. Both */
/* The create paraneter and create_valid paraneters nust */
/* be set to false in the call to getObject(). */
if (getObject() == NULL) {
wite object does not exist error response to the sockio buffer

}
/* Check to see if the object exists but is nmarked */
/* as ‘‘does not exist’'’'. */

Version 1.1 Page 43

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

i f (isNodeNonexistent() == TRUE) {
wite object does not exist error response to the sockio buffer
return

}

/* Check to see if this client is within the |ist of */

/* clients who have perfornmed a ‘‘touch’’ on the object */

i f (touchNodePerfornmed() == FALSE) {
wite perm ssion denied error response to the sockio buffer
return

}

/* Check whet her the object can be cleanly renoved */
/* using the rnObject() function call */
if (rmbject() == PASS) {

wite a positive response to the sockio buffer

}
el se {

wite an internal error response to the sockio buffer
}

6.2.1.10 Get the current directory path

The pseudocode processing for how a client “pwd” requestiglled is as follows:

get the current path with getCurrentPath()
wite current path to the sockio buffer

6.2.1.11 Change the current directory

The pseudocode processing for how a client “cd” requestnslliea is as follows:

/* Make a request to change the current directory path */
i f (changeCurrentPath() == FAIL) {
wite directory does not exist error response to the sockio buffer

return
}
el se {

wite new directory path response to the sockio buffer
}

6.2.1.12 Create directory or register intent to remove a diectory

The pseudocode processing for how a client “touchdir” retjisehandled is as follows:

if (touchdir nessage not valid) {
wite a syntax error nessage to the sockio buffer
return

Version 1.1 Page 44

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

/* Use the directory path and try to retrieve the */
/* directory. The create paranmeter to getDir() nust */
/* be set to TRUE and the create_valid paranmeter must */
/* be set to TRUE */
if (getDir() == FAIL) {

Status Server internal error

wite a negative response to the sockio buffer

return
}
el se {

if a coment was specified, set it with set NodeComent ()
}

add the directory to the client touch Iist using addTouchNode()
wite a positive response to the sockio buffer

6.2.1.13 Remove a directory

The pseudocode processing for how a client “rm -r” requésaisdled is as follows:

if (rndir nessage not valid) {
wite a syntax error nessage to the sockio buffer
return

}

/* Use the directory path and try to retrieve the */

/* directory. The create paranmeter to getDir() nust */

/* be set to FALSE. */

if (getDir() == FAIL) {
wite a directory not found error response to the sockio buffer
return

}

/* Check to see if this directory is within the list of */
/* directories the client has perfornmed a ‘‘touch’’ on */
i f (touchNodePerforned() == FALSE) {
wite perm ssion denied error response to the sockio buffer

return
}
[* Try to renove the directory. At this point, the function */
/* should only fail if the directory has valid subdirectories */

if (ronDir() == PASS) ({
wite a positive response to the sockio buffer

}
el se {

wite directory contains subdirectories error response to the sockio buffer
}

As itis currently designed, directories will never be coetply removed as long as they have data objects within them
or subdirectories. In this case it is possible for a dirgctorhave a NONEXISTENT data object within it for the case
of a monitor added to a data object, so it will not be possibleesmove the directory. Currently, only data objects
have a value state of NONEXISTENT while directories are gbvaisible. This should not be a problem with the

Version 1.1 Page 45

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

envisioned model for creating and removing directoriesdinl fFITS header information. If needed, directories could
also be given a NONEXISTENT state and effectively hiddemfraew. This will add some additional complexity
in the checks required when removing data objects and diiest Presumably when a data object or directory is
removed, some recursive traversal of that tree would nede performed in order to determine whether directory
objects could then be removed more permanently.

6.2.1.14 Retrieve the contents of a directory

There are two stages where a retrieval of directory contesusrs. First is the processing of the directory retriegal r
quest (“Is”), and second is the handling of the directorpogses. In the first stage, the processing is triggered bly a ca
to the clientrecv_.hook(). In the second stage, the processing is triggereégated calls to the cliesendhook().

At most, only one message can be sent to the client with eaafit sendhook() callback function call. As a result, if
the client must be sent the contents of a large directoryclieet sendhook() will be called multiple times.

The pseudocode processing for how a client “Is” requestnslilea is as follows:

STAGE 1: Processing initiated when a *‘1s’’ request is received.

if (Is nessage not valid) {
wite a syntax error nessage to the sockio buffer
return

}

/* Use the dir_path and try to retrieve the directory */

/* The create paranmeter to getDir nust be set to FALSE */

if (getDir() == FAIL) {
wite directory does not exist error response to the sockio buffer
return

}

/* Use the directory object returned by getDir() as */
/* the base directory to performthe I's on. Regular */

/* expression rules will be applied to each data */
/* object nane to determne if a match exists. |If */
/* so, the object nane and value will be stored in a */

/* linked list. */
set up the Is list of Is nonitor objects via setupDirectoryListing()

/* Set up the client object fields to indicate that an Is */
/* request is in progress. */
set LSl nProgress()

wite the directory header to the sockio buffer

STAGE 2: Processing initiated each tine the client receives a
client_send_hook() callback function call.

/* Check to see if nmonitoring data nust be sent to the client */
checkSendLS()

As previously mentioned, the processing of a directorynigsand monitor retrieval is very similar since each case
requires an iteration through a list of monitor objects. Assult, it is possible to reuse much of the same code.

Version 1.1 Page 46

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.1.15 Initiate a trace

The pseudocode processing for how a client “trace on” reagsiésindled is as follows:

set the global flag indicating that tracing is enabl ed
wite a positive response to the sockio buffer

6.2.1.16 Stop atrace

The pseudocode processing for how a client “trace off” retjisehandled is as follows:

set the global flag indicating that tracing is disabled
wite a positive response to the sockio buffer

6.2.1.17 Serialize Status Server data to a file

The pseudocode processing for how a client “autosave” tgsibandled is as follows:

informclient that it has successfully receive the request
execute the serialize() function with the fork flag set to TRUE

6.2.1.18 Shutdown the Status Server

The pseudocode processing for how a client “shutdown” reigjadnandled is as follows:

execute the serialize() function with the fork flag set to FALSE
initiate an exit()

6.2.2 Client Services

This component is responsible for managing the data cl@sslgciated with a client connection. Most of the functions
manipulate information contained within the clignfo_t data structure.

6.2.2.1 Create a client object

This function creates the client object. Figure 14 contdieslefault values within the cliemtfo_t structure when the
client object is created. The function will return the newtgated clieninfo_t structure for the client.

client _info t *createCient(void)

6.2.2.2 Update a client object

When a client sends the “register” command with the programaand UNIX Process ID (PID), this function will
be called to add this information to the clienfo_t structure associated with the client connection.

void updateCient(client_info_t *client,
const char *prg_nane,
int pid)

Version 1.1 Page 47

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.2.3 Check if a mailbox message was sent to a client

The client should only retrieve monitor information oncéd#s been informed with a mailbox message that there is
monitored data available for retrieval. The following ftioo will return a boolean indicator of whether the clientsva
sent the mailbox message. TRUE indicates that a mailboxagessas sent to the client. FALSE indicates that a
mailbox message was not sent to the client.

BOOLEAN wasMai | boxMsgSent ToCl i ent (const client_info_t *client)

6.2.2.4 Check if monitor information must be sent to the cliat

When the clienisendhook() within the Message Handling Services componentllsaiaa call will be made to this
function to determine whether monitoring data must be serthé client. If so, it will either send out the next
monitoring update or the EOT message if all monitoring infation has been sent to the client.

This function will check whether the isionitor.in_prog field within the clientinfo_t structure is set to TRUE. If so,

it will start at the monitorptr position within the monitafist and send the next qualifying monitor update to the
client. If the monitorptr is set to NULL, or there is no more monitoring informatitmnbe sent to the client, an EOT
message will be sent. Once the EOT message has been seatytbeiforin_prog field will be set to FALSE and the
monitor_ptr will be set to NULL.

If the is_-monitorin_prog field is set to FALSE, the imboxempty flag is set to FALSE, and thed$ient.notified flag
is set to FALSE the client will be sent a mailbox message titig that there is monitored information ready for
retrieval. Once this message has been sent, thieist notified flag will be set to TRUE.

voi d checkSendMonitor(client _info_ t *client)

6.2.2.5 Set flag indicating monitoring is in progress

When the clientrecv_hook() within the Message Handling Services componentivesa “poll” request, a call will
be made to this function to set the appropriate fields to atdithat a monitoring update retrieval command is now in
progress.

This function will perform the following actions:

e Set the ismboxempty flag to TRUE
e Set the isclient.notified flag to FALSE
e Set the ismonitorin_prog flag to TRUE

e Set the monitaptr flag to the first object in the linked list of monitoring elejs for this client. If for some
reason, this client received a “poll” request, but it doeshrave any monitors in its monitdist, the function
will return FAIL.

PASSFAI L set MonitorlnProgress(client_info t *client)

6.2.2.6 Set flag indicating a directory listing is in progres

When the clienfrecv_hook() within the Message Handling Services componenivesan “Is” request, a call will be
made to this function to set the appropriate fields to inditlaat a directory listing is now in progress.

This function will perform the following actions:

Version 1.1 Page 48

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

¢ Build a linked list of monitor objects hold directory listinnformation by calling setupDirectoryListing().

e Setthe isls_in_prog flag to TRUE

e Setthe Isptr flag to the first object in the linked list of monitor objectsed to hold directory listing information.
If the linked list is either NULL or empty, lptr will be set to NULL.

voi d setLSInProgress(client _info_t *client)

6.2.2.7 Check if directory listing information must be sentto the client

When the clientsendhook() within the Message Handling Services componentlisdiaa call will be made to the
this function to determine whether directory listing datastbe sent to the client. If so, it will either send out thetnex
directory listing message or the EOT message if all dirgdisting information has been sent to the client.

This function will check whether the ils_in_prog field within the clieninfo_t structure is set to TRUE. If so, it will
start at the I9tr position within the Idist and send the next directory listing to the client. If thgtr is set to NULL,

or there are no more directory contents to be sent to thetcharEOT message will be sent. Once the EOT message
has been sent, the ls_in_prog field will be set to FALSE, and the_gr will be set to NULL.

voi d checkSendLS(client_info_t *client)

6.2.2.8 Add a directory object or data object to the client taich list
This function will add a directory object or data object t@ finked list used to store objects which this client has

performed a touch on. The directory object or data objedtomily be added to the list if it doesn’t already exist in the
list.

voi d addTouchNode(client_info_t *client,
const node_info_t *node)

6.2.2.9 Check whether a data object or directory object is pd of the client touch list
This function will take a directory object or data object atftbck whether a “touch” or “touchdir” was previously

performed on the object by a client. The function will retTfRUE if the object is contained within the linked list of
“touched” objects. Otherwise, the function will return FBE.

BOOLEAN t ouchNodePer fornmed(const client _info_ t *client,
const node_info_t *node)

6.2.2.10 Add a monitoring object to the client monitor list

This function will add a monitoring object to the linked listed to store monitor objects.

PASSFAI L addMonitorToC ient(client_info_ t *client,
const non_info_t *non)

Version 1.1 Page 49

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.2.11 Remove a monitoring object from the client monitofist

This function will remove a monitoring object from the lirtkéist used to store monitor objects. If this monitoring
object can not be found the function will return FAIL.

PASSFAI L renpveMonitorFronClient(client_info_ t *client,
const nmon_info_t *non)

6.2.2.12 Add a monitoring object to the client Is list

This function will add a monitoring object to the linked lissed to store monitor objects for directory listings.

PASSFAI L addMonitorLS(client info t *client,
const nmon_info_t *non)

6.2.2.13 Remove a monitoring object from the client monitofist

This function will remove a monitoring object from the lirtkést used to store monitor objects for directory listings.
If a monitoring object can not be found the function will retdFAIL.

PASSFAI L renpveMonitorLS(client info t *client,
const non_info_t *non)

6.2.2.14 Set the mailbox flag indicating that monitors are aailable
During object updates or removals, if the monitor criteda been met to indicate that a client must need to be notified,

this function will be called. This function causes thenibox empty flag to be set to FALSE. As a result, a mailbox
message will be sent if the dient notified flag is also set to FALSE.

voi d setMai | Avai l abl e(client _info_ t *client)

6.2.2.15 Get the current path associated with a client

This function will return the current path used by the St&asver for relative path references associated with atclien
connection. The returned path will be represented as anuabgiath.

char *getCurrentPath(const client_info_t *client)

6.2.2.16 Change the current path associated with a client

This function will change the current directory path asated with a client. The path specified as a parameter can be
specified in either relative or absolute path format. In otdeletermine whether the newly specified directory path
is valid, this function will call getDir() in order to ideri$i whether a directory referenced with the new directorjhpat
exists. If so, the fullhame field within the directory object will be stored in thent object as the new default path
for the client. This function will return FAIL if the requesd directory path does not point to a directory within the
Status Server.

PASSFAI L changeCurrent Pat h(const char *new pat h)

Version 1.1 Page 50

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.2.17 Remove a client and all of its relevant data

When a client disconnects from the Status Server, the dlibjeict and all of its related information must be freed
up and removed. This requires that any client objects reéee in the touclist of a directory object or data object

be removed. In addition, all monitor objects associatedh \he client for both directory listings and data object
monitors must be removed. As part of the monitor cleanuys, will require that monitor object references in the
monitorlist and Islist for directory and data objects also be removed. Thikésgrocessing which is performed by
the removeMonitor() function.

PASSFAI L renpoveC ient(client_info t *client)

6.2.3 Data Services

This component is responsible for managing the data agedaiéth the hierarchical structure within which Status
Server directory objects and data objects are stored. Mdkedunctions manipulate information contained within
the nodeinfo_t data structure.

6.2.3.1 Create a directory or register the intent to remove alirectory

This function is responsible for creating a directory if dedn’'t already exist. If it does exist, the comment assediat
with the directory will be modified if the comment passed inthe function is not NULL. In order to remove a
comment, an empty string must be passed to this functiorlliim reference to the client object will be stored in the
touchlist if it doesn’t already exist.

voi d touchDir(const node_info_t *base,
const char *path,
const char *coment,
const client_info_ t *client,
node_info t **dir)

6.2.3.2 Retrieve a directory

This function will retrieve a directory object from the héechical Status Server directory structure. If the “créate
parameter is set to TRUE, the directory will be created ifaesih't already exist. As part of the directory creation
process, intermediate directories may also be createdesfiithe process. For example, if the Status Server only has
a root directory “/” and this function is called to creates#t553460, both a fits directory and 4553460 directory will
be created. All directories will be created with a value of RECTORY".

The address of the directory pointer will be returned frois fanction if it was successful. If the function returns
FAIL, more details regarding the failure will be availabtedfht.errno.

PASSFAI L getDir(const node_info_ t *base,
const char *path,
const BOOLEAN cr eat e,
dir_info_t **dir_p)

Version 1.1 Page 51

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.3 Remove a directory

This function will attempt to remove a directory object frahe Status Server directory structure. The removal of
a directory object is permitted if the client requesting teenoval has initiated a “touchdir” request for the direc-
tory. Otherwise the function will return FAIL. The functionill also return fail if the directory object contains any
subdirectories. Detailed information regarding a failwik be available in cfhterrno.

If the operation is valid, an attempt will be made to removehedata object from the nodest associated with the
directory object. This will be done by calling the rmObjgdt(nction with the checkouch parameter set to FALSE.

A check will then be made to determine if the directory obmatrently has a touch associated with it from another
client, or if the size of the nodkst is non-zero. If so, the directory object itself can net dtompletely removed.
Otherwise, the directory object will be removed from theguaudirectory object nodkst and deallocated.

PASSFAIL rnDir(node_info_t *dir,
const client_info_ t *client)

6.2.3.4 Add a data object to a directory object

This function adds an object to the linked list of objectsoagated with the directory object. This operation should
not fail unless an object with the same object name alreaidysar the object list, or an attempt is made to add a data
object to another data object instead of a directory ob[@etailed information regarding a failure will be availalte
cfht.errno.

PASSFAI L addhj ect (node_info_t *dir,
const node_info_t *obj)

6.2.3.5 Remove a data object from a directory

This function will attempt to remove a data object from thekéd list of objects associated with a directory object.
If the data object currently has a touch associated withoitnfanother client, or if the data object currently has
any monitor objects within its monitdist or Is_list, the data object will have its value changed to NONEXESIIT.
Otherwise, this object does not have any external deperateacd will be removed from the parent directory object
nodelist and deallocated.

This function should not fail unless it is called on a diregtobject or if the client object is not contained within the
linked list of clients who have performed a “touch” on thigalabject if the checkouch parameter is set to TRUE.
Detailed information regarding a failure will be availalmecfht errno.

PASSFAI L rmObj ect (node_info_t *obj,
const client_info t *client,
BOOLEAN check_t ouch)

6.2.3.6 Retrieve a data object

This function will retrieve a data object with a given objeetme from the Status Server hierarchy. If a data object
with the requested hame can not be found, the function wilirreNULL. Otherwise a pointer to the data object will
be returned. This function will iterate through the Statesv@r hierarchy as needed to find the target object.

If the “create” parameter is set to TRUE, the data object bdlcreated if it doesn’t already exist along with any
required directories. If the “creatalid” parameter is set to TRUE and a data object is createdlillibe created
with a value of UNDEFINED. In addition, the client object Wile added to the touclist associated with the data
object and the data object will be added to the talishassociated with the client object. Otherwise, the objell

be created with a value of NONEXISTENT.

Version 1.1 Page 52

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

node_info_t *get Object(const char *object nane,
const client_info_t *client,
const BOOLEAN cr eat e,
const BOOLEAN create_valid)

6.2.3.7 Set adirectory comment

Convenience function to set the comment associated witheatdry or data object.

voi d set NodeConment (node_i nfo_t *node,
const char *comment)

6.2.3.8 Serialize Status Server contents to a file

This function will initialize the serialization processrfthe entire Status Server hierarchical directory struecand

all the objects contained within the Status Server. Sedtibn will be performed by saving a series of transactions
which can replayed by the message handler in order to recmh#te Status Server directory structure and the object
information contained within it. The messages will be ideadtto the “touch” and “touchdir” requests sent by a
client with the exception that they will contain some adtitl parameters such as object value, value state, update
timestamp, and creation timestamps for the objects.

During normal operations, the contents of the Status Sevilebe serialized at a predefined interval (probably 10
minutes). The Status Server contents will also be seriligevhen a client requests a serialization. In both cases, a
forked process will be used to save the contents of the S&amer to disk. The only time a fork will not be performed

is when a client request a shutdown of the Status Server, erran condition occurs requiring the Status Server to
exit.

This function will initiate recursive processing to traserthe directory structure and initiate serialization facte
directory object and data object within the directory stuue.

Whenever the Status Server forks a child process to indiaterialization, the PID of the child process will be saved.
If a subsequent request for the Status Server to seriadiek is received before the previously spawned child preces
has completed, the previous child process will be “killedtia new serialization will be initiated.

Once the serialization contents are successfully writtea file, the UNIX “mv” command will be performed to
transfer the file contents to the target location. This sseysid to prevent the creation of a corrupted or incomplete
file from being written to the standard file serializatiorgetrlocation.

If a function should return FAIL, details will be available cfht.errno.

PASSFAI L serialize(const char *path, BOOLEAN fork)

6.2.3.9 Populate a serialized touch string for a directory ndata object
This component will populate a pre-allocated string buffith a serialized “touchdir” or “touch” command used to

restore the directory object or data object upon a restayeest. If the function should return FAIL, details will be
available in cfhterrno.

PASSFAI L get Seri al i zeTouch(const node_info_t *dir,
char **buffer)

Version 1.1 Page 53

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.10 Create a data object

This function will create a data object and associate withetname, comment and lifetime passed in to the func-
tion. Figure 15 contains the default values within the node_t structure when the data object is created. The
createvalid parameter indicates whether the object should betedeaith a state of UNDEFINED in the case of
TRUE or NONEXISTENT in the case of FALSE.

voi d creat eObj ect (const char *nane,
const char *coment,
const tinme_t lifetine,
const BOCLEAN create valid,
node_info_t **obj)

6.2.3.11 Add a monitor to a directory or data object

This function will add a monitor to the linked list of monitobjects (either monitalist or Is_list). The isnodemonitor
parameter will identify which monitor list the monitor olojemust be added to. This function should not return FAIL
unless the monitor already exists in the linked list of mondbjects.

PASSFAI L addMoni t or ToNode(node_info_t *node,
const non_info_t *non,
const BOOLEAN i s_node_nonitor)

6.2.3.12 Remove a monitor from a directory or data object

This function will remove a monitor from the linked list of mibor objects (either monitalist or Is_list) within a
directory object or data object. Them®demonitor parameter will identify which monitor list the maoi object
must removed from. This operation should not return FAILegslthe monitor object does not exist in the linked list
of monitor objects.

PASSFAI L renpveMoni t or Fr omNode(node_info_t *node,

const nmon_info_t *non,
const BOOLEAN i s_node_nonitor)

6.2.3.13 Retrieve a monitor from a directory or data object

This function will return a monitoring object from the linddist used to store monitors which have been placed on a
data object. Each monitor object within the linked list vii# checked to determine if it is associated with the client
object passed as a parameter. If it is found, a pointer to th@toring object will be returned. If not, the function will
return NULL.

mon_info_t *getMnitorByCient(const node_info_t *node,
const client_info_t *client)

6.2.3.14 Inform monitoring clients of object changes

This function will go through the linked list of monitoringo@ects associated with the data object and determine
whether the monitoring criteria has been met to cause a mailiessage to be sent out to the client. This function
should not return FAIL unless it was executed on a directogen

PASSFAI L i nfornmVonitorCl i ents(const node_info_ t *obj)

Version 1.1 Page 54

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.15 Setup a monitor listing for a directory
This function will set up a linked list of monitor objects taundle an “Is” command request from the client. This
function will initiate calls to the createMonitor() funoti in the Monitor Services component to create monitors for

each subdirectory and data object contained within theeotidirectory object. This function should not return FAIL
unless it was executed on an data object node.

PASSFAI L setupDirectorylListing(node_info_t *dir,
const client_info_t *client)

6.2.3.16 Refresh object state

Since some data objects may have a lifetime associatedlvath,tit is important to update the state of the data object
whenever the object becomes expired. This is critical ifdhject is being monitored. This function will check and, if
necessary, update the value of a data object to EXPIREDe i$téte is updated, the informMonitorClients() function

will be called to handle potential client monitor updatekisTfunction should not return fail unless it was executed on
a directory node.

When an object goes from valid to expired, it must be remoxeh the time dependent object list by calling remove-
TimeDepObject(). More details regarding the time dependbject list can be found in section 6.2.5.

PASSFAI L refreshObj ect State(node_info_t *obj)

6.2.3.17 Check whether a directory or data object is valid

This function will return a boolean value indicating whatliee value of a directory or data object is valid. This
function will return TRUE if the valuestate field is set to SSALID. Otherwise the function will return FALSE.

BOOLEAN i sNodeVal i d(const node_info_t *obj)

6.2.3.18 Check whether a data object does not exist

For monitor purposes, it is necessary to create directggctdand data objects to support monitoring pointer irityggr
even if the data objects or directories did not previousigtext his function will return TRUE if the valustate field
is set to SSNONEXISTENT. Otherwise the function will return FALSE.

BOOLEAN i sNodeNonexi st ent (const node_i nfo_t *obj)

6.2.3.19 Retrieve the value of a directory or data object

This function will return the value of a directory or data et This value may or may not be valid. In the case of a
directory, this will be a string indicating the change coofthe directory.

char *get NodeVal ue(const node_info_t *node)

Version 1.1 Page 55

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.20 Set the value of a directory or data object
This function will set a new value for a directory or data ajéf the passed in value is set to NULL, the value of the
node will be incremented if it is a directory and UNDEFINEDtifs a data object.

In the case of a data object, informMonitorClients() willdadled to determine if clients must be notified of a monitor
change due to a change in the data object value. In additicdmeek is made whether a non-zero lifetime was defined
for the data object. If so, the repositionTimeDepObjeaif)dtion within the Time Dependent Services component
will be called to handle the positioning of this object wittthe linked list of time dependent objects.

If the value of a data object is changing from EXPIRED to ad/atilue, the addTimeDepObject() function will be
called to add this object to the time dependent object list.

voi d set NodeVal ue(node_i nfo_t *node,
const char *val ue)

6.2.3.21 Set the lifetime of a data object

Convenience function to set the lifetime of a data objectthdf lifetime of an object is unlimited, it will be set to
0. This function should not return FAIL unless it was exedut@ a directory node. If the lifetime of the object
changes from unlimited to a valid lifetime, the addTimeDépt() function must be called in the Time Dependent
Services component to add this data object to the linkeafiitne dependent objects. If the lifetime of the object

changes from a valid lifetime to unlimited, it must be remd\J¥eom the list of time dependent objects with the
removeTimeDependentObject() function.

PASSFAI L set OhjectLifetine(node_info t *obj,
const time_t lifetinmne)

6.2.3.22 Get the lifetime of a data object

Convenience function to retrieve the lifetime of an objétthis function is called on a directory node, a value of 0
will be returned.

tinme_t getojectLifetine(const node_info_ t *obj)

6.2.3.23 Get the comment associated with a directory or databject

Convenience function to retrieve the comment associatéid avidirectory or data object. This may be NULL if a
comment has not been associated with the directory or dgatob

char *get NodeConment (const node_info_t *node)

6.2.3.24 Set the full path of a directory or data object

This is a convenience function to set the fully-qualifiedabte path of a directory or data object. Once an directory
or data object is created, the path will never change, sirisabt possible to move objects within the Status Server.

voi d set Ful | Pat h(const node_info_t *node,
const char *full path)

Version 1.1 Page 56

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.3.25 Get the full path of a directory or data object

This function returns the fully-qualified absolute path diirectory or data object. The path associated with a dirgcto
or data object should never be NULL.

char *get Ful | Pat h(const node_info_t *node)

6.2.3.26 Remove a node

This function will free up all the resources associated aalory or data object and remove it.

PASSFAI L renpbveNode(const node_info_t *node)

6.2.4 Monitor Services

This componentis responsible for managing the data adsdaiath the Status Server monitors. Most of the functions
manipulate information contained within the manfo_t data structure.

6.2.4.1 Create a monitor object

This function will create a monitor object. Figure 16 contaihe default values within the manfo_t structure when
the monitor object is created.

The type of monitor object which is being created will be itiféed with the isdatamonitor. Monitor objects can be
created to support either client requested object mondodirectory listings. Once a monitor object is created, the
client services component and data services componeritisemiised to ensure that the monitoring object is properly
associated with the client object and data object. If therretalue of the function indicates that the call failed, mor
details will be available in cfherrno.

PASSFAI L createMnitor(node_info_t *object,
client _info_ t *client,
const doubl e deadband,
const boolean is_data_nonitor)

6.2.4.2 Update the deadband threshold for a monitor object

This function will update the deadband threshold for antgxgsmonitor object.

voi d updat eMoni t or Deadband(non_i nfo_t *non,
const doubl e deadband)

6.2.4.3 Record the object value which has been sent to a clten

This function will be called whenever a monitor update istgerthe client. It will set the value sent to the client as
well as the prewsentts timestamp indicating when the client was sent the maniganformation.

voi d set Sent Dat a(non_i nfo_t *non,
const char *val ue)

Version 1.1 Page 57

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.4.4 Check whether a client must be notified of a monitorig change

This function will return a boolean value indicating whethiee current value of an object has changed enough to
warrant a client notification.

BOOLEAN noti fyCient (const nmon_info_t *non)

6.2.4.5 Remove a monitoring object

This function will free up all the resources associated aitnong object and remove it. Before a monitor object
is removed, references to the monitor object must be rem&reed the monitorlist and Islist in the nodeinfo_t
object and Idist and monitotlist in the clientinfo_t object. This operation should not fail, but if it does, mdegails
regarding the failure are available in cfitrno.

Although the functionality is not contained within this fttion call, after a monitor is removed, a check should be
made whether the data object being monitored can be rem@seck a monitor is removed, the data object can also
be removed if its value is NONEXISTENT and if the size of its¢h list, monitorlist and Islist are all zero. In this
case, the object is already marked as non-existent and dbeave any other external references to it.

PASSFAI L renpbveMonitor(nmon_info_t *non,
const BOOLEAN i s_data_nonitor)

6.2.5 Time Dependent Services
This component is responsible for managing the the data@ted with time dependent objects. A time dependent
object is defined as a data object, whose state will changendiapg upon time. Any data object which has a specified

lifetime is considered a time dependent object. The funstio this component manipulate the linked list of time
dependent objects.

6.2.5.1 Add a data object to the list of time dependent objest

This function will take a data object and try to add it to threkkd list of time dependent objects. A check will be made
whether it is a data object and not a directory and whethdiféiene associated with the data object is not set to zero.
Both cases must be true. Also, this function will make sueedhject does not already exist in the linked list. If the

object already exists, or the previous checks failed, tiniefion will return FAIL. When the object is inserted in the
list, it will be added in descending order based on the etipmdime of the object.

PASSFAI L addTi neDepObj ect (const node_info_t *obj)

6.2.5.2 Remove a time dependent object from the list of timeeppendent objects

This function will take a time dependent object and perforgearch to see if the data object already exists in the
linked list of time dependent objects. If so, it will be reneaMrom the list. If not, the function will return FAIL.

PASSFAI L renoveTi neDepObj ect (const node_info_t *obj)

Version 1.1 Page 58

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.5.3 Service time dependent objects

This function will iterate through each node in the linkest lof time dependent objects which calculations show
should have changed to an expired state. The state of thet@bjebe refreshed by calling refreshObjectState(). This
function will handle calling removeTimeDepObject() if thbject has changed to an expired state as well as triggering
client monitor notification processing if needed. Sinceligteshould be maintained in a sorted order by objects which
should be the first to expire at the top, it will only be necegda iterate through the list until an object has time
remaining before it expires.

voi d serviceTi neDepObj ect s(voi d)

6.2.5.4 Reposition a time dependent object

Whenever a time dependent object is modified, there is a goadae that it must be repositioned within the linked

list. This is because based on its lifetime, the time to the pessible expiration of the object may require a different
positioning within the list which is sorted in descendind@rbased on the expiration time of the object. This function
should not fail unless it is called on a directory object othié data object is not contained within the list of time

dependent objects.

PASSFAI L repositionTi neDepObj ect (const node_info_t *obj)

6.2.5.5 Retrieve the minimum time to next update

This function will return the number of seconds before aapttem within the list of time dependent objects must be
serviced. This time interval will be used as part of the clalibon to identify the timeout value to call the socksewn()
function in the sockio library. This time interval becomkes timeout used to call the underlying socket select functio
call. This time value can be calculated by determining theetto expiration of the first item in the linked list. If the
list does not contain any time dependent objects, a preditimestant time value will be returned.

i nt getM ni munili neout | nt erval (voi d)

6.2.6 Utility Functions

This component contains utility functions which may be ubgdne or more Status Server software components.
Some of the functionality which will be provided by this coament include:

6.2.6.1 Memory Allocation Wrapper Functions

Memory allocation in the Status Server will be handled inhsaavay that a call to allocate memory will never fail.
Wrapper functions will be provided around malloc() and @) to prevent a calling function from receiving a NULL
pointer indicating that memory could not be allocated. Thapper functions, ssMalloc() and ssRealloc() will perform
an underlying call to malloc() and realloc(). However, their of these system calls returns a NULL value, the function
will sleep for a predefined time interval (maybe a second pasd retry. The function will not return back a pointer
until memory is available. Since the Status Server is sitigleaded, this means the server will block until memory
becomes available.

Some analysis regarding some of the alternative approachesdling out-of-memory conditions is included in the
Design Analysis section at the end of this document.

Version 1.1 Page 59

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

6.2.6.2 Linked List Functions

The nodeinfo_t and clientinfo_t data structures each contain fields identified as linkésl Ii& complete set of func-
tions will be provided to manipulate the linked lists. Thekiéd lists in the Status Server will be doubly linked and
optionally sorted upon insert.

6.2.6.3 Argument Parsing and Validation Functions

When a client request is received across the socket ineerfamust be checked to determine if it is a valid URL
encoded string and, if so, it must be parsed according t@itswands and arguments. Parsing functions already exist
within libcli to handle some of the basic argument parsirguieed.

6.2.6.4 Logging Functions

Error and debug logging will be handled through the loggimactions within libcfht. Convenience functions to handle
the formatting of debug and error information before dfigv is called may be included here.

7 Design Analysis

Throughout the design process, there were alternativeoappes which were analyzed in order to decide the final
design choice. This section addresses some of the altezaaind the final decision.

7.1 Out-of-Memory Handling in the Status Server

Several of the components and functions in the Status Seiillelequire memory to be allocated or reallocated as
part of its functionality. It is possible for calls to mallywr realloc() to fail in the unlikely event that memory is
not available on the machine. While this event hopefully wéver happen, it is an error condition which must be
managed. This section addresses the issue and some padtbhatives. A decision must still be made on the
approach to be implemented in the Status Server. The AR aall pseudocode documented in the software design
don’t take into account error conditions caused by the litalid allocate enough memory.

7.1.1 Alternatives for Handling Out-of-Memory Condition

In many cases, the memory allocation will occur as a resu#t ofient request. In this case, it could be possible

to send a return message to the client indicating that the@estaqcould not be processed. Other times, the memory
allocation could occur when a client must be informed of a iteoimg event and space can not be allocated in the

client monitoring object to hold the new value. At this peihtould be possible to defer the monitor update by treating

this a the same case as a full network buffer. Using the eremsage approach to handling “out-of-memory” errors,

the Status Server would continue to operate in a somewheddied mode until additional memory becomes available.

This would require the client to handle additional failetlre values. A basic flow diagram for this approach is shown

in figure 18.

Another alternative would be to have the Status Server adglogic to both the malloc() and realloc() function calls.
In this case, if memory was not available, it would sleep fame period of time before retrying. Since the Status
Server is single-threaded, this means the entire Serveepsowill block while memory is not available. Also, any
clientrequest currently in progress will block causingahient socket connection to remain tied up until the clisiate
socket timeout threshold is reached. This approach woirdredte the need to check for out-of-memory conditions
simplifying the Client API and Status Server along with efiating one possible return value the client may need to
check for. The disadvantage is that the connection may retiead up or time out. Hopefully, the process gobbling

Version 1.1 Page 60

Canada-France-Hawaii Telescope Corp. Status Server Detailed Design

. Status
Client
Server
Request
Memory not
available
Out of Memory Response

Figure 18: Status Server Memory Allocation Failure Errordgiege Flow

up the memory is not the Status Server itself. If so, this @pghn would cause the Status Server to slowly consume
more and more memory. If the memory is being consumed by anptlcess, it is possible that the process will soon
die and normal operation can be quickly resumed. If a corepdofthe process is triggered, it could take some time
before the memory again becomes available. A basic flow dmador this approach is shown in figure 19.

) Status
Client CASE 1: Successful Retry
Server
Request
Memory not available
sleep(x)
;‘ Retry
Response Memory available
. . . Status
Client CASE 2: Retry / Client Timeout
Server
Request

Memory not available
sleep(x)

Q Retry

Memory not available
sleep(x)

Retry
Memory not available

Socket Timeout

Figure 19: Status Server Memory Allocation Failure Retryskbge Flow

A final alternative could be to initiate a predefined numberetfies and if the memory can not be allocated when
retries are exhausted, serialize the contents of the S&snger and trigger an exit. This approach would require
that buffers required for serialization be preallocated tirat the 10 processes used to write the data to a file do not
require additional memory allocation. The total time aafié to retries must be set below the default socket timeout
defined for socket connections. In this case, the client évaot need to implement any additional error checking for
individual command responses, and it will be guaranteedmblock if it has connected to the Status Server without
the autoretry option. For clients connecting to the Staeiwé& with the autoretry option, they will block until the

Version 1.1 Page 61

Canada-France-Hawaii Telescope Corp.

Status Server Detailed Design

Status Server is restarted. A basic flow diagram for this@ggirt is shown in figure 20.

There is a good chance that this alternative would not wankesthere is a good possibility that the 10 processes used
to write the data to a file will require an allocation of memory

Client

Client

Se

Status

rver

Request

Memory not available
sleep(x)

j Retry

Memory not available
sleep(x)

Retry
Retry count reached
Serialize to disk

exit(FAIL)

Figure 20: Status Server Memory Allocation Failure Retrg &xit Message Flow

7.1.2 Preferred Approach to Handling an Out-of-Memory Condtion

The Status Server will implement the second approach, wigighires the Status Server to add retry logic to both the
malloc() and realloc() function calls. In this case, if noall) or realloc() function calls fail, the Status Server siéep
for a predefined time before retrying the memory allocation.

8 Document Change Log

\ersion

Date

Comments

1.0

May 10, 2002

First release for review.

11

May 28, 2002

Revised document based on comments from S. Isani and J. Bh

bma

Version 1.1

Page 62

