
CFHT Socket I/O Library

Sidik Isani

2002 March 18th
Last revised: 2004 May 18th (v1.6)

This document is available on the Web at: http://software.cfht.hawaii.edu/sockio/

Version 1.6 2004-5-18 - Made it safe to call sockserv del client() inside sockserv run().
Version 1.5 2003-6-2 - Added client disconnect hook and finalize sockclnt half of libsockio.
Version 1.4 2003-5-27 - Documented the new send-binary hook and client-delete features. Added full prototypes to
the API documentation.
Version 1.3 2002-4-16 - Documented the receive hook-disconnect feature (2.2.2).
Version 1.2 2002-3-30 - New sections 1.2, 1.3, and 3.x added.
Version 1.1 2002-3-20 - Corrected sbuf t state diagram to show SBUF RECEIVED going directly to write() instead of
SBUF EMPTY. Revised last server flow chart and text above it to show which steps happen inside client recv hook()
versus client send hook().
Version 1.0 2002-3-18 - First version. Lowest layers of server-side done.

Abstract

libsockio.a is a library for clients and servers that need to pass messages to each other over a socket. It is
designed specifically for the needs of the NEO status server, and other servers which use “line-based” communication
protocols. If used as intended, it is possible to create very fast and responsive single-threaded multi-client socket
servers with only a few lines of code needed to manage the socket communication. A second part of the library
contains functions to help implement clients, or client protocol libraries to communicate with the server.

Contents

1 Overview 3

1.1 Messages . 3

1.2 Library Components . 3

1.3 Example: Environment Server and Client . 4

1

2 Server-Side 5

2.1 sockserv t* sockserv create(const char* servname); . 6

2.2 void sockserv destroy(sockserv t* sockserv) . 6

2.3 int sockserv run(sockserv t* sockserv, int timeout hundredths) . 6

2.4 void sockserv del client(sockserv t* sockserv, void* cinfo) . 6

2.5 void client recv hook(void* cinfo, char* message in out) . 7

2.5.1 client recv hook() and disconnect commands . 8

2.6 void client send hook(void* cinfo, char* message out) . 9

2.7 void client send binary hook(void* cinfo, char* data, int* bytes) . 10

2.8 void* client add hook(unsigned char ip addr[4]) . 11

2.9 void client del hook(void* cinfo, char* buffer) . 13

3 Client-Side 14

3.1 sockclnt t* sockclnt create(const char* hostspec, int io timeout seconds) 14

3.2 disconnect hook(void* userdata) . 14

3.3 reconnect hook(void* userdata) . 14

3.4 void sockclnt destroy(sockclnt t* sc) . 14

3.5 void sockclnt send(sockclnt t* sc, const char* message) . 14

3.6 const char* sockclnt recv(sockclnt t* sc) . 15

3.7 const char* sockclnt check(sockclnt t* sc) . 15

A Internal Server-Side Half-Duplex Buffer Mechanism - sbuf t 16

List of Figures

1 libsockio components . 3

2 libsockio and example client and server . 4

3 Internal Flow Diagram for Server . 5

4 echoserv source code . 5

5 envserv source code . 7

6 disconnect command . 8

7 Flow Diagram for Server with Mailbox System . 9

8 Flow Diagram for Server with Mailbox System and Long Replies 10

9 Using client add hook . 11

10 Using client add hook for security . 12

11 Using client del hook . 13

12 Possible States for an sbuf t . 17

2

1 Overview

1.1 Messages

The primary purpose of libsockio is to pass messages between programs. The content of the messages depends on the
specifics of the protocol implemented on top of libsockio, but libsockio does impose some restrictions on this protocol.

Messages passed back-and-forth across the socket are octet (byte) data with a pre-defined maximum size (defined in the
header file as SBUF SIZE, currently 32768 bytes) and are line-based (terminated with ’\n’ or ’\0’). The terminator
is added by the library on outgoing messages, and removed by the library from incoming messages. Neither ’\n’ nor
’\0’ may appear inside the message itself. Trailing ’\r’ characters are removed from the end of a message, if present.
This is to allow the alternate ”\r\n” newlines sent by some “telnet” clients. All other characters are legal (as far as
libsockio is concerned.) The safest approach is to encode all bytes less than ASCII 32 (space). Actual encoding of
messages is outside the scope of this library.

Another restriction placed on the protocol is that the each message sent by a client to the server must have a response.
The client can never send more than one message at a time, without an intervening message back from the server.
The messages from the server to the client can be asynchronous, or multi-line (if your protocol supports it), but
communication in the other direction is more limited. These restrictions are a result of the design of libsockio.

As of version 1.4, a new facility has been added to allow a server to send binary data in response to a client query.
Client and server must negotiate the size of this transfer as part of their protocol, and the client API provided by sockio
does not handle reading this binary response itself. Messages from the client-to-server direction are always limited to
single, line-based messages terminated with ’\n’ or ’\0’.

1.2 Library Components

Figure 1 shows each of the C files in the library and the main functions each one exports. A server would typically
use the library directly (i.e., it would link with -lsockio) while a client might use a protocol library to facilitate
communication with a specific type of server. If this protocol library is built on top of the client-side of libsockio, a
client would need to link with both (i.e., -lprotocol -lsockio). See section 1.3 for and example of this.

sbuf_create()

sbuf_destroy()

sbuf_state()

sockserv_create()

sockserv_destroy()

sockserv_run()

+client_add_hook()

+client_del_hook()

+client_send_hook()

+client_recv_hook()

sockclnt_create()

sockclnt_destroy()

sockclnt_check()

sockclnt_send()

sockclnt_recv()

+reconnect_hook()

sock_non_blocking()

sock_linger()

sock_keepalive_and_reuseaddr()

sock_get_tcp_service_port()

sockserv_t

sbuf_t shared stuff, utilitiy functions

sockclnt_t

"sockio/sockserv.h" "sockio/sockclnt.h"

"sockio.h""sbuf.h"

(libsockio.a)Server−side Client−side

Figure 1: libsockio components

3

1.3 Example: Environment Server and Client

Figure 2 shows a server (the envserv example in the project directory) and two clients based on a an envserv-specific
protocol library called libssenv.a. The clients simply set and get values in the server, by making calls to libssenv.
More clients could be created to interact with this server just by using the three calls (ss initenv, ss getenv, ss setenv)
in libssenv.a.

sockserv_create()

sockserv_destroy()

sockserv_run()

+client_add_hook()

+client_del_hook()

+client_send_hook()

+client_recv_hook()

ss_getenv()

ss_setenv()

ss_initenv()

sockclnt_create()

sockclnt_destroy()

sockclnt_check()

sockclnt_send()

sockclnt_recv()

+reconnect_hook()

sockserv_t sockclnt_t

"sockio/sockserv.h" "sockio/sockclnt.h"

"sockio.h""sbuf.h"

(libsockio.a)

"ssenv/ssenv.h"

Server−side Client−side

(libssenv.a)

ssSetenv ssGetenvenvserv

socket

sbuf_create() sock_non_blocking()

Figure 2: libsockio and example client and server

4

2 Server-Side

The calls in libsockio which are used to build a server are built on an internal buffer and state machine called sbuf t
(for details on how it works, see the appendix). The library provides a routine which creates a sockserv t and a
function which runs the state machine for you. The minimum logic required to process i/o is shown in figure 3.

Parse Request
ProcessRequest

set buffer="Reply"

client_recv_hook()

Set fd in readmask. Clear fd in readmask

Set fd in writemask.Clear fd in writemask

RECEIVING SENDING

EMPTY

RECEIVED

EOF

ERROR
Log warning

Get client state

sbuf_state()
Clear fd in readmask
Clear fd in writemask

Remove client from list
sbuf_destroy()

Figure 3: Internal Flow Diagram for Server

There are only three functions to create, run, and destroy the sockserv t. A minimal socket server can be implemented
just by calling sockserv create() followed by sockserv run() in an endless loop. The following example is in the sockio
project directory, and is called echoserv:

#include "sockio/sockserv.h"

int
main(int argc, const char* argv[])
{

sockserv_t* echoserv = sockserv_create("5252");

if (!echoserv) exit(1);
for (;;) sockserv_run(echoserv, SOCKSERV_WAIT);
exit(0);

}

Figure 4: echoserv source code

5

2.1 sockserv t* sockserv create(const char* servname);

The sockserv create() function takes a single string argument that is either the name or number of a TCP port on which
to listen. The owner of the program must have permission to use this port. Ports less than 1024 can only be used by
the superuser.

2.2 void sockserv destroy(sockserv t* sockserv)

The pointer returned by sockserv create() should be passed back to sockserv destroy() before your program exits,
especially if you use the client del hook() feature. Both of these are shown in greater detail in examples below.

2.3 int sockserv run(sockserv t* sockserv, int timeout hundredths)

The pointer returned by sockserv create() is passed back to sockserv run(), along with a timeout value (in hundredths
of seconds). The previous example uses the special value SOCKSERV WAIT, which will wait indefinitely for a
new client to connect, or for an existing client to send a new request. To add a sockserv back-door to an existing
program that has some kind of polling loop, sockserv run() can also be called with SOCKSERV POLL which returns
immediately after one round of servicing clients.

Normally, all actions are triggered from within sockserv run() using the “client * hook()” functions described below.
Each time a client has sent a complete line, your receive hook gets called. Any time it is possible to send a line to a
client (which is almost every time sockserv run() happens usually) your send hook gets called. This means the client
must always be the one to initiate a disconnect.

2.4 void sockserv del client(sockserv t* sockserv, void* cinfo)

The sockserv del client() function is not needed by most typical socket servers, but in some cases, the server may wish
to force a client to be disconnected (after some timeout period, for example). If such behavior is desired, the server
must assign unique client info pointers to each client, using the client add hook() described below. Then the server
must pass that same key (cinfo) to sockserv del client() at the time it wishes to force that client to be disconnected the
next time your program calls sockserv run().

Prior to version 1.6 of the sockio library, any existing client del hook() that might have been set up would get called
during sockserv del client() itself. Now, this routine only marks the client for deleting during the next call to sock-
serv run(). Any client del hook() will be called at that time (and no other hooks will get called in the intervening
time.)

As a special case, if cinfo is NULL, this function causes all of the clients to be disconnected on the next call to
sockserv run(), without destroying the server itself.

6

2.5 void client recv hook(void* cinfo, char* message in out)

In order to make your server do something useful, a call-back function must be provided in client recv hook(). This
function returns void, and has an arbitrary pointer as the first argument (described later) and a pointer to a buffer.
Whenever a client sends in a request, this function will be called, and the client’s message will be in the buffer. The
call-back function should process the request, write a (null terminated) response back into the same message in out
buffer, and return. The response will go out to the client immediately, if possible. (But if downstream FIFOs are full,
it will go out on a subsequent call to sockserv run(), but this is completely hidden from the caller.)

Using only a client recv hook(), it is possible to change the echoserv example into a server which shares its own
environment (**envp) with any number of clients. These clients can all read and write the same environment variables
by writing messages to the socket. This example is also in the project directory, and is called envserv:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "sockio/sockserv.h"

void
client_recv(void* cinfo, char* buffer)
{

char* p;
if (strchr(buffer, ’=’))
{

putenv(strdup(buffer));
sprintf(buffer, ". OK");

}
else
{

p = getenv(buffer);
if (p) sprintf(buffer, ". %.999s", p);
else sprintf(buffer, "! no such variable");

}
}

static sockserv_t* envserv = NULL;

static void cleanup(void) { sockserv_destroy(envserv); }

int
main(int argc, const char* argv[])
{

sockserv_t* envserv = sockserv_create("5253");

if (!envserv) exit(EXIT_FAILURE);
atexit(cleanup);
envserv->client_recv_hook = client_recv;
for (;;) sockserv_run(envserv, SOCKSERV_WAIT);
exit(EXIT_SUCCESS);

}

Figure 5: envserv source code

7

The example also shows the proper way to call the counterpart to sockserv create(), sockserv destroy(). Without this
cleanup function, some operating systems may not allow you to start a new server on the same port number for some
period of time. To test your server, connect to the port with a telnet client:

> telnet localhost 5253
foo
! no such variable
foo=hello 123
. OK
foo
. hello 123

2.5.1 client recv hook() and disconnect commands

The server may also wish to implement a close-connection command. The actual command could be something like
“exit”, “quit”, “logout” but depends on the protocol you decide to implement in your server. When such a command
is received, write the empty string (set buf[0] to the NUL character, buf[0]=’\0’).

Normally, the server must write a (non-empty) response if it provides a receive hook. If the response is empty, this
condition is treated the same as if an EOF condition had occurred (for example if the client closed the connection.) A
common reason for implementing a disconnect command is for convenience during manual connections made with a
telnet client.

The program segment in figure 6 would add a “quit” command to a server’s receive hook:

static void
client_recv(void* cinfo, char* buffer)
{

/*
* Allow clients to disconnect themselves.
*/

if (!strcmp(buffer, ‘‘quit’’) ||
!strcmp(buffer, ‘‘bye’’) ||
!strcmp(buffer, ‘‘exit’’) ||
!strcmp(buffer, ‘‘logout’’))

{
buffer[0] = ’\0’; /* disconnect the client */
return;

}
. . .

Figure 6: disconnect command

8

2.6 void client send hook(void* cinfo, char* message out)

If the server wishes to send asynchronous messages, it may do so whenever the socket is ready for writing, and there is
no partially received message in the buffer. This function will be called almost every time that sockserv run() happens,
so if there is nothing to send, this function should calculate that quickly and efficiently, and just return without writing
anything in message out. If there is a message to go out, it should simply be copied into the buffer. The following
figure shows how a client could be notified that something which the server is monitoring for it has changed. This
uses a mailbox system, forcing the client to come back with a request to actually read the change. (The actual message
could be sent instead, if the client can handle it and keep up.) Figure 7 shows the additional logic needed to add
asynchronous notification.

No

empty?
mbox

set mbox_empty=No
set buffer="You have mail"monitors?

No

YesYes

client_send_hook()

Set fd in readmask. Clear fd in readmask

Set fd in writemask.Clear fd in writemask

RECEIVING SENDING

EMPTY

RECEIVED

EOF

ERROR
Log warning

Get client state

sbuf_state()
Clear fd in readmask
Clear fd in writemask

Remove client from list
sbuf_destroy()

client_recv_hook()

Parse request
Process request

Set buffer="Reply"

Figure 7: Flow Diagram for Server with Mailbox System

For better throughput, multi-line transfers in the direction from the server to the client may be useful (multi-line
transfers in the other direction are not supported.) As the client is ready to accept each line of a multi-line response,
the client send hook() will be called. For the first line to be processed, the client recv hook() can usually set things up
and then pass control to the client send hook() to get things started.

Typically, multi-line responses will be sent in one “turn” of the client, because the underlying network FIFOs are
generally large enough to hold several messages. The buffer in libsockio can only hold one message at a time, however,
so it is rare but possible that an entire multi-line response will not be sent at once. In this case, there is no difference
in the way client send hook() gets called, but it should not make any assumptions about the state of anything which
might have been changed by intervening transactions with other clients.

Figure 8 shows the most complete usage of sockserv t, including support for both a mailbox and multi-line reply
messages.

Both the mailbox feature and multi-line responses can be implemented by creating a second hook, client send hook(),

9

No

empty?
mbox

Process Request
Set buffer="Reply"

set mbox_empty=No
set buffer="You have mail"

Figure out next

response line
Set buffer="Reply"

No

more lines
left to a previous

request?

Parse buffer

RECEIVING SENDING

EMPTY

RECEIVED

EOF

ERROR
Log warning

Set fd in readmask. Clear fd in readmask

Set fd in writemask.Clear fd in writemask

monitors?

No

YesYes

sbuf_state()
Clear fd in readmask
Clear fd in writemask

Remove client from list
sbuf_destroy()

Get client state

such that send
hook will send
1 line at a time

Initialize a list

client_recv_hook()

client_send_hook()

line?

YesNo
fits in a single

Reply

Figure 8: Flow Diagram for Server with Mailbox System and Long Replies

which will be called whenever the server has the opportunity to send something out to the client. This call-back will
typically check for previous responses that are still in progress, mailbox flags, time stamps, etc., and if it determines
it wants to send anything else to a client, it does so by writing the message to the buffer (exactly the same way as the
client recv hook() call-back would do).

2.7 void client send binary hook(void* cinfo, char* data, int* bytes)

This is a special version of the send hook for use in implementing protocols that require a server to send binary data
responses to a client (binary communications in the other direction, from the client to the server, are not possible.)
This hook is used in exactly the same way as the normal line-based send hook, except that a maximum of SBUF SIZE
(32KB) of binary data can be copied into the data buffer, and a byte count must be specified in bytes. As with the
send hook(), if send binary hook() does nothing but return, nothing is sent.

If your server defines both a send binary hook() and a send hook(), the binary hook is always tried first.

An example of a server that uses binary transfers can be found in /cfht/src/medusa/espadons/fli/fliserv.c.

10

2.8 void* client add hook(unsigned char ip addr[4])

The send hook is usually not very useful unless you know which client is calling back. So you probably also want make
use of the client add hook() in this case. Inside this call-back, you may allocate a per-client structure of information.
The first piece of information you have about the client is its IP address, passed as four bytes in the first argument of
client add hook(). Other information about the client can be filled in later, as transactions proceed with this client,
since each of those will cause the pointer to your structure to be passed back as the first argument to client recv hook()
and client send hook(). All client add hook() must do is allocate the structure and return the pointer. Here is an
example of a simple client add hook call-back.

typedef struct
{

BOOLEAN mbox_empty;
BOOLEAN long_reply;

} client_info_t;

/*
* Returns per-client data to store with the new client, or
* returns NULL to reject the client.
*/

void*
client_add(unsigned char remote_ip[4])
{

client_info_t* cinfo;

cinfo = (client_info_t*)malloc(sizeof(client_info_t));
memset(cinfo, 0, sizeof(cinfo));
cinfo->mbox_empty = FALSE;
cinfo->long_reply = FALSE;
return cinfo;

}

.

.

.

int main(int argc, const char* argv[])
{

. . .
sockserv->client_add_hook = client_add;
. . .

}

Figure 9: Using client add hook

11

The client add hook() can also be used to implement some basic security. If you wish to reject all connections except
those from specifically allowed IP addresses, the client add hook() can look at the IP address and return NULL to let
sockserv run() know that this client should be rejected. Here is how the client add() function from the above
example would look with an IP-address check added:

/*
* Returns per-client data to store with the new client, or
* returns NULL to reject the client.
*/

void*
client_add(unsigned char remote_ip[4])
{

client_info_t* cinfo;

/*
* Hardcoded to only allow connections from:
* 127.*, 128.171.80.* and 128.171.83.*
*/

if (!(remote_ip[0]==127 ||
(remote_ip[0]==128 && remote_ip[1]==171 &&
(remote_ip[2]==80 || remote_ip[2]==83))))

{
fprintf(stderr,

"warning: rejecting nonlocal client"
" from %d.%d.%d.%d\n",
(int)remote_ip[0], (int)remote_ip[1],
(int)remote_ip[2], (int)remote_ip[3]);

return NULL; /* Reject client */
}

fprintf(stderr, "client accepted from remote_ip %d.%d.%d.%d\n",
(int)remote_ip[0], (int)remote_ip[1],
(int)remote_ip[2], (int)remote_ip[3]);

cinfo = (client_info_t*)malloc(sizeof(client_info_t));
memset(cinfo, 0, sizeof(cinfo));
cinfo->mbox_empty = FALSE;
cinfo->long_reply = FALSE;
return cinfo;

}

Figure 10: Using client add hook for security

12

2.9 void client del hook(void* cinfo, char* buffer)

Whenever an end-of-file or error condition occurs with a client, this clean-up callback can be used to free the cinfo
client info allocated by client add hook(). An example:

void
client_del(void* cinfo, char* buffer)
{

fprintf(stderr, "Cleaning up client\n");
free(cinfo);

}

.

.

.

int main(int argc, const char* argv[])
{

. . .
sockserv->client_del_hook = client_del;
. . .

}

Figure 11: Using client del hook

The buffer argument in this callback is not used.

13

3 Client-Side

Just as the server side calls are used to build a server, this part of libsockio can be used to build a protocol library
for your server. The API for envserv, called libssenv is an example. That, in turn is used by the ssGetenv
and ssSetenv client programs which talk to envserv. (Refer to figure 2 to see how the pieces depend on each
other.) The source files sockclnt.h and sockclnt.c contain calls which can be used to build an API library like
libssenv.

3.1 sockclnt t* sockclnt create(const char* hostspec, int io timeout seconds)

This returns a pointer to a sockclnt t that must be passed back to the other functions below. A connection attempt
is made immediately. Each host in hostspec (see below) is tried at most one time by this call. Any subsequent calls to
other sockclnt routines will (indefinitely) keep trying to re-establish the connection by cycling through the list (unless
you define a disconnect hook() and exit the program.)

The hostspec argument must be a string of the form "hostname:port,hostname2:port,...". The hostname
can be either an IP address or resolvable host name, and port can be either a port number or resolvable service name.
If the first hostname:port specification fails, sockclnt create() and any later attempts to reconnect will cycle through
all of the choices.

The timeout for a connection, a read (sockclnt recv), and a write (sockclnt send) is set in the io timeout seconds
parameter. 15 seconds is a reasonable value, but the correct setting depends on your protocol and function of the
server.

3.2 disconnect hook(void* userdata)

3.3 reconnect hook(void* userdata)

If this happens, a reconnect hook function in the user code will be called after the connection is back up. This
function may exchange messages with the server to rebuild any state information that was lost when the old connection
broke. If reconnect hook is not needed, do not set it.

3.4 void sockclnt destroy(sockclnt t* sc)

This closes the underlying file descriptor and frees resources allocated by sockclnt create().

3.5 void sockclnt send(sockclnt t* sc, const char* message)

Reconnects and/or sends a message to the server. If a previous receive operation has failed, sockclnt send will
reconnect to the server. If such a reconnection was needed, and if a user reconnect hook has been defined, it
will be called before the message is sent so it has the chance to renegotiate the current state with the server. recon-
nect hook will also be called if “message” can not be sent completely. This function will try to reconnect to the
server and send the message indefinitely. The only way to give up is to implement a reconnect hook that raises a
signal, exits, or never returns. A warning message will be printed to stderr when a retry is in progress.

By passing NULL for “message”, this function can be used to ensure a connection to the status server. For example,
socket clients which use sockclnt check or sockclnt recvwill want to use sockclnt send(sc, NULL)
any time a NULL is returned from these functions. Instead of passing a NULL, it may be necessary to resend the most
recent protocol command.

If “message” is not NULL, the design of the server-side of sockio, requires that it be followed by one or more calls
to receive a response. This is because the server must generate a response to all messages that it receives (except for
disconnect, but even in that case the receive function should be called to get the end-of-file.)

14

3.6 const char* sockclnt recv(sockclnt t* sc)

This waits up to io timeout seconds (or indefinitely if timeout is 0) for a response to the previously sent message. If
the “response” is end-of-file or a timeout happens, then NULL is returned when the server closes the socket. A NULL
is also returned in case of any error. In any of the cases that NULL is returned, a subsequent call to sockclnt send
will cause the connection to be re-established. This receive call never handles reconnecting though. (It wouldn’t make
sense, because if the socket closed unexpectedly while reading a response, the request will have to be re-sent anyway,
and the client code must handle that.)

3.7 const char* sockclnt check(sockclnt t* sc)

Like sockclnt recv, but returns NULL immediately if no messages are waiting.

15

A Internal Server-Side Half-Duplex Buffer Mechanism - sbuf t

An sbuf t manages per-client buffer space for socket i/o. It is implemented as a small state machine which has
six (6) states, not including the hidden states of being in a read() or write() call. Transitions between the states are
triggered in sockserv run() by the library. There are only two operations done on the sbuf t:

1. Send a message to the client. This is done simply by writing directly into the buffer space associated with the
sbuf t, (char*)(sbuf->buffer). This must only be done if the current state is SBUF EMPTY. In all
other states, it is not possible for the server to send a message to the client.

WARNING: Writing data into the buffer when the state is not SBUF EMPTY will cause unpredictable results!

2. Wait for a complete message to be received from a client. When the state becomes SBUF RECEIVED, a
message is waiting in the same buffer which is used to send a message. Once in SBUF RECEIVED, the caller
must do whatever is needed with the data (parse an incoming command as the case might be with a typical
socket server.) Before calling sbuf state() again, the caller must write a response into the same buffer. All
received messages must have a response. If the call does no processing at all, this model ends up implementing
an echo-server since the received message, still in the buffer, is simply sent back to the client (see the echoserv
example).

sockserv run() essentially calls sbuf state() in a loop, which makes the state machine run (and makes data
go in or out of the socket.) sbuf state() returns only when a stable or blocking state has been reached. The
resulting state is always the return of sbuf state(), and sockserv run() uses this in a switch statement to decide
what to do next.

While the socket may be able to handle communication in both directions at once, note that this state machine cannot.
If there happens to be a partially received message in the buffer when the server wishes to send something out, the
receiving message must first come in completely and then be processed, before anything can go out. In this sense, the
communication channel is ”half-duplex”.

This is prototyped in sbuf.h and implemented in sbuf.c. The complete state model is shown in figure 12.

16

(or "SENT")

EMPTY

RECEIVING read()

EOF ERROR

write() SENDING

end of file

err

err

!done

RECEIVED

!done

done

read_set

read_set write_set

done

!read_set !write_set

user: sbuf_create()

message into
user: write async

buffer

user: write response

user: processing buffer

into buffer

Figure 12: Possible States for an sbuf t

17

