
CFHT FITS Handling Library

Revision 1.4

Sidik Isani <isani@cfht.hawaii.edu>
2001 April 8th

Last revised: 2013 December 19th

The information here is available as HTML. The URL is: http://software.cfht.hawaii.edu/libfh/

Abstract

This library of C functions can be included in your code to simplify the task of manipulating FITS data in either
basic FITS format, or Multi-Extension FITS (MEF). Special features of the library are:� Simple mechanisms to handle FITS with IMAGE and TABLE extensions.� Novel keyword sorting mechanism using index numbers.� File locking allows multiple programs to run in parallel on the same file.� Designed to interface with a status server some time in the future.

References and related documents:� Download latest copies of the C header, fh.h and the C source code, fh.c� Printable version of the C-language header file (PostScript)� MEMO: Proposed Long Term Goals for FITS at CFHT (HTML)� FITS Standard NOST 100-2.0 (HTML version at STSCI)� NOAO master keyword dictionary (HTML)

Contents

1 Summary of All Functions 4

2 Using ‘idx’ Sorting Numbers 6

2.1 What are ‘idx’ numbers? . 6

2.2 Reserved Keywords . 6

2.3 Auto-assigned ‘idx’ Numbers . 6

1

3 Opening, Locking, Closing and Creating FITS files 6

3.1 fh create() . 6

3.2 fh copy hu() . 6

3.3 fh destroy() . 7

3.4 fh read() . 7

3.5 fh file() . 7

3.5.1 Advisory File Locks . 8

3.6 fh reindex() . 8

3.7 fh file desc() . 9

3.8 fh reserve() . 9

3.9 fh write() . 9

3.10 fh write padding() . 9

3.11 fh write padded image() . 9

3.12 fh read padded image() . 10

3.13 fh copy padded image() . 10

3.14 fh rewrite() . 10

4 Examining Extensions and Image Data 11

4.1 fh extensions() . 11

4.2 fh image bytes() . 11

4.3 fh image blocks() . 11

4.4 fh header blocks() . 11

4.5 fh ehu() . 11

4.6 fh ehu by imageid() . 11

4.7 fh ehu by extname() . 11

5 Looking at Keywords 12

5.1 fh get bool() . 12

5.2 fh get int() . 12

5.3 fh get flt() . 12

5.4 fh get str() . 12

5.5 fh first() and fh next() . 12

5.6 fh idx() . 12

5.7 fh search() . 12

5.8 fh show() . 12

5.9 fh idx before() and fh idx after() . 13

2

6 Changing Keywords 13

6.1 fh remove() . 13

6.2 fh set all units() . 13

6.3 fh set com() . 13

6.4 fh set bool() . 14

6.5 fh set int() . 14

6.6 fh set flt() . 14

6.7 fh set str() . 14

6.8 fh set val() . 14

6.9 fh merge() . 14

7 Redirecting Error Messages 14

7.1 fh log warning() . 14

7.2 fh log error() . 15

7.3 fh log perror() . 15

8 Including and Linking the Library 15

9 Recipes for Converting to libfh 15

9.1 Opening a File . 15

9.2 Changing Keywords . 16

9.3 “Flushing” Changes to a File . 17

9.4 Closing a File . 17

10 Examples 17

10.1 Display any Primary or Extension Header (fhlist.c) . 17

10.2 Loop through all extensions by EXTNAME (fhextname.c) . 18

10.3 Tool to Set any Keyword(s) (fhset.c) . 19

10.4 Tool for making Reserve Space (fhreserve.c) . 20

10.5 Update a Card with known Keyword . 20

10.6 Add set of COMMENT cards to already open file . 21

10.7 Build a FITS File from Scratch . 21

10.8 Build an MEF File from Scratch . 23

3

1 Summary of All Functions

NOTE: In this table, hu is a type HeaderUnit that was returned from a previous call to fh create() or fh ehu(), fd is an
open file descriptor (type int) returned by a previous call to open(), and idx is a double floating point sorting number
used internally by the library. Finally, where-ever name and comment are found, these are ASCII character strings
(type char*). They must contain only those characters allowed by the FITS standard.

Table 1: Functions to Open, Lock, Close, or create new FITS files

Return Function Parameters Description

HeaderUnit fh create No parameters Allocate a table to store FITS cards.
HeaderUnit fh copy hu (HeaderUnit hu) Allocate a table to store FITS cards and copy an initial

set from ‘hu’.
fh result fh destroy (HeaderUnit hu) Free memory associated with ‘hu’. Check return!
fh result fh read (HeaderUnit hu, int fd,

double idx)
Read header from an open file descriptor.

fh result fh reindex (HeaderUnit hu) Restore fh registry.h indices to the cards in ‘hu’.
fh result fh file (HeaderUnit hu, const*

filespec, fh mode)
Open and read header from a file or extension.

int fh file desc (HeaderUnit hu) Get the file descriptor used by fh file
fh result(??) fh reserve (hu, int n) Reserve at least n cards slots for downstream use.
fh result fh validate (hu) Test if ‘hu’ is complete and valid (fh validate.c)
fh result fh count cards (hu) Put library in special mode to count cards
fh result fh write (hu, fd) Write header, padding, and END to an open file.
fh result fh write padding (hu, fd) Write padding to go after the IMAGE.
fh result fh write padded image (hu, fd, void* data, size,

typesize)
Write ‘size’ image bytes of ‘data’ plus padding.

fh result fh read padded image (hu, fd, void* data, size,
typesize)

Read ‘size’ bytes into user allocated ‘data’.

fh result fh copy padded image (hu, fd out, fd in) Copy image and padding from another open file.
fh result fh rewrite (hu) Write the header back to the original file, if possible.

Table 2: Functions for Looking at Extensions and Image data

Return Function Parameters Description

int fh extensions (hu) Reads NEXTEND to determine number of extensions.
int fh image bytes (hu) Reads BITPIX and NAXIS* to find (unpadded) image size.
int fh image blocks (hu) Converts fh image bytes to size in 2880-byte blocks.
int fh header blocks (hu) Returns size required for header in 2880-byte blocks.
HeaderUnit fh ehu (hu, int number) Seek to extension by its offset in the file (caution!)
HeaderUnit fh ehu by imageid (hu, int imageid) Seek to extension with matching IMAGEID keyword.
HeaderUnit fh ehu by extname (hu, char* extname) Seek by EXTNAME (e.g. “im07” or “chip03b”)

4

Table 3: Functions for Looking at Keywords

Return Function Parameters Description

fh result fh get bool (hu, char* name, fh bool* value) *value gets FH TRUE or FH FALSE
fh result fh get int (hu, char* name, int* value) *value gets integer value of ‘name’
fh result fh get flt (hu, char* name, double* value) *value gets double-float value of ‘name’
fh result fh get str (hu, char* name, char* value, maxlen) *value gets string value of ‘name’
const char* fh first (hu) Returns the first 80 character record (or NULL)
const char* fh next (hu) Returns the next 80 character record (or NULL)
double fh idx (hu) Return the index for the card last returned by fh next

.
fh result fh search (hu, char* name, double* idx) Returns FH SUCCESS if found (and *idx if !NULL)
fh result fh show (hu) Display a list on stdout (for debugging).
double fh idx after (hu, char* name) Get ‘idx’ for a new card after ‘name’
double fh idx before (hu, char* name) Get ‘idx’ for new card before ‘name’

Table 4: Functions for Changing Keywords

Return Function Parameters Description

fh result fh remove (hu, char* name) Removes a card from the header unit in memory. It
will disappear from the file on the next fh rewrite()

fh result fh set all units (hu) Overrides default behavior of fh set*() functions so
they change extensions too.

void fh set com (hu, idx, char* name, char* com-
ment)

Creates new comment card containing up to 72 ASCII
characters. “name” should be “HISTORY” or “COM-
MENT”.

void fh set bool (hu, idx,name, fh bool value, com-
ment)

Changes or adds the card ‘name’ with new value of
’T’ if value is non-zero, and sets comment field if com-
ment is not empty.

void fh set int (hu, idx, name, int value, com-
ment)

Changes or adds keyword ‘name’ with new integer
value and comment fields.

void fh set flt (hu, idx, name, double value, dou-
ble flt, double prec, comment)

Changes or adds keyword ‘name’ with new floating-
point value.

void fh set str (hu, idx, name, char* value, com-
ment)

Changes or adds keyword ‘name’ with new string
value and comment fields.

void fh set val (hu, idx, name, char* value, com-
ment)

Changes or adds keyword ‘name’ with new pre-
formatted value and comment fields. (Use typed
functions above instead.)

fh result fh merge (target hu, source hu) Merges all cards from one list into another. Final or-
der depends on the sorting numbers in both lists.

Table 5: Redirecting Error Messages

Return Function Parameters Description

void fh log warning (fh logger t log function) Set warning log handler
void fh log error (fh logger t log function) Set error log handler
void fh log perror (fh logger t log function) Set system error log handler (check errno)

5

2 Using ‘idx’ Sorting Numbers

2.1 What are ‘idx’ numbers?

With other FITS libraries, the final order of the FITS cards in the header is detemined by one of two things:

1. The order in which the cards were added in the source, OR

2. The order in which the cards appear in a template.

For a large system where it may not alway be possible to write all cards from the same section of code, or even the
same program, these methods are not the most convenient. A novel feature of this library is that it can sort cards based
on numbers, like library of congress reference numbers, which you choose.

The ‘idx’ argument required by many functions in this library is a floating point number used internally for sorting the
cards before they are written to a FITS header. Values below 10.0 are reserved for use by the library itself. Other than
that, values can be arbitrarily chosen.

2.2 Reserved Keywords

The following keywords must be placed in a specific order to conform to the FITS standard:

SIMPLE, EXTENSION, BITPIX, NAXIS, NAXIS*, EXTEND, NEXTEND, GROUPS,
PCOUNT, GCOUNT, TFIELDS, TFORM*, TBCOL*.

The ‘idx’ values for these are ignored. Use FH AUTO.

2.3 Auto-assigned ‘idx’ Numbers

It is also possible to use FH AUTO for everything, in which case the order of the FITS header depends only on the order
in which cards were added (except for the specific ones listed in the previous section, which will always be first.)

The original ‘idx’ numbers are lost once a header has been re-read from a FITS file. In this case they are assigned
numbers 10.001, 10.002, 10.003, ... You can change the base starting number (10.0) by passing a different value to
fh read(). Something like that would be useful if the program uses fh merge() after.

3 Opening, Locking, Closing and Creating FITS files

3.1 fh create()

Before calling fh file() to read from a filename (or fh read() to read from a file descriptor which you opened yourself)
this function must be used to create a new HeaderUnit. The HeaderUnit will be empty, until fh file(), fh read(), fh set*(),
or fh merge() functions are used to add cards to it.

3.2 fh copy hu()

This creates a new HeaderUnit from an existing one, copying all the FITS cards from the existing one into the otherwise
empty new one.

6

3.3 fh destroy()

For each HeaderUnit returned by fh create(), don’t forget to pass it to fh destroy() when it is no longer needed. The
following happens in fh destroy()

1. Any remaining advisory file locks are released.

2. The file is closed, if and only if it was opened with fh file().

3. Any linked extension header units are fh destroy()’d.

4. All resources allocated to the list are freed.

The first two steps may have errors, so always check the return code from fh destroy(). For example:

if (fh_destroy(hu) != FH_SUCCESS) rtn = FAIL;

WARNING: fh destroy() should not be used on HeaderUnit’s returned by the fh ehu*() functions. These are destroyed
automatically when their parent header unit is fh destroy’ed.

3.4 fh read()

This is not needed if you use fh file(). But if you open() your own file descriptor, pass it to this function, along with an
empty HeaderUnit from fh create() to read the header from a FITS file.

Whether you used fh read() or fh file(), at this point if the file happens to be an MEF file, you can find out using
fh extensions() and access each extension unit using fh ehu*().

3.5 fh file()

While it is possible to open your own file descriptor, and use the library’s routines only to parse the header, using
fh file() to open the file for you will give all tools using this library a similar behavior. Several things happen when you
call this function:

1. If no filespec, or the special name ’-’ is given, the library will try to read from Standard Input. If stdin is a terminal
device, an error will result.

2. Next, if the filespec exists exactly as given, it is opened, the primary header unit is parsed and returned in
HeaderUnit.

3. Next, if the filespec string contains ’[]’, that portion of the string is removed and treated as an EXTNAME. The
header unit of a matching extension is returned in HeaderUnit instead of the primary header. If the file exists,
but no matching EXTNAME could be found, the error is the same as if the file was not found.

4. Next, filespec + ”.fits” is attempted (with EXTNAME, if any).

5. Finally, if all of the above fail, filespec + ”/” + filebase + extnum + ”.fits” is tried. In this step, filespec does not
include ”.fits” if it had it, and extnum is extname with a leading ”chip” or ”im” removed. This hack allows our
current split-file convention to be accessed as if it was MEF.

In addition to a new HeaderUnit, which you must obtain from fh create() and the ‘filespec’ parameter, a file mode is
required. If you intend to use fh rewrite() to update any FITS cards, you must choose FH FILE RDWR. Otherwise, use
FH FILE RDONLY for this parameter.

7

3.5.1 Advisory File Locks

Advisory file locking will automatically be done before reading the header unit. If the file was opened RDWR, the lock
is not released until the first call of fh rewrite(). Otherwise, with RDONLY, the lock is already released by the time
fh file() returns. (EXCEPTION: If the file contains extensions, such a RDONLY file lock is left in place until fh destroy() is
called.)

Tests between HP-UX 10.20, Solaris 2.6, and Linux-2.2.16-cfht (includes our NFS3 patches) have been completed. All
combinations of NFS server and NFS client (and local file access) were tested including competing access from all three
architectures and from six hosts to one file, at the same time. Per run, each test client makes 6 calls to fh file() and
inserts 6 new FITS cards, checks that they appear correctly (PID’s are saved in the value field) and checks that other
test client’s cards are valid as well. The conclusions from the tests are:� File locking works as advertised on our Linux/HP-UX/Solaris boxes.� NFS efficiency is not adversely affected by locking.

Read performance was tested with /cfht/bin/fhtool -Vv file.fits, before, during, and after file locking:

1. Before ever applying a lock to a file, the first time a file is accessed over NFS for reading, the speed is limited by
either the remote disk, or the network (plus some NFS overheads). This is typically in the range of 3-8 MB/sec
on our systems.

2. A second access (even for full CFH12K mosaic images) is always much faster, as it gets read from the cache. Druid
(Linux) gets about 300 MB/sec, Ohia (Linux) gets about 250 MB/sec, Mahina (Solaris) gets about 100 MB/sec,
and Neptune gets 25 MB/sec (except for large files, which it doesn’t seem to be able to cache, so they go back to
the 3-8 MB/sec speed.)

3. Access during an exclusive (RDWR) lock will not happen (unless a client ignores the lock.)

4. Access after the lock is back to the speed of (1), except for when the file was not modified (no call to fh rewrite()).
In that case, the next access immediately returns to the cached speed. This means, with our current NFS imple-
mentations, use of the cache is apparently put “on hold” during a lock, and only invalidated if the file actually
changed. At that point, there is no mechanism to determine which blocks of the file have been modified, so the
whole thing must be read over the network again. This would actually be the same without locking, by the way.

Local access to the file does figure out which individual blocks have changed, and so in that case the whole file
does not have to be re-read into local buffers each time a FITS card is changed.

5. After a file has been locked, changed, unlocked, read once over the network . . . subsequent reads immediately
return to the fast cached speed of (2).

These tests have not revealed any problem with file locking on our system, nor have they shown any disadvantage to
using file locks. Therefore, the default of the library will be to lock, since no harm is done. It should be safe to run
programs which update FITS cards in parallel.

3.6 fh reindex()

During an fh read() or fh file(), libfh assigns arbitrary index numbers to the keywords read (with specific ones only
for the first few required cards). fh reindex() reassigns the numbers from fh registry.h to the cards in the provided
HeaderUnit.

8

3.7 fh file desc()

fh file() opens a file on a HeaderUnit. Pass this header unit to fh file desc() if you need to do any operations directly
on the file descriptor. File position after a call to fh file() is at the start of the image (or first extension header for MEF).
To be certain of file position, see fh ehu() for a way to seek to a specific section of data (including data associated with
the primary/only header.)

3.8 fh reserve()

Use this before calling fh write() to select the number of reserved COMMENT cards in the header. These cards will be
used by other programs to add more keywords to the FITS file.

(These other programs do not call fh reserve() themselves. The just call fh rewrite() and fail if there wasn’t enough
room.)

3.9 fh write()

Write the FITS header to a file descriptor. After this, make a call to fh write padded image() to add the data onto the
new FITS file. Use fh rewrite() instead of fh write() for programs which only update FITS cards without generating a
new FITS file.

3.10 fh write padding()

This function writes 0-byte padding intended to go after the image data. If the header unit contains XTENSION=’TABLE’
then ASCII space (0x20-byte) padding is used instead, to satisfy the requirements of an ASCII table.

You don’t need this function if you use fh write padded image() or fh copy padded image(). If you choose to write
the data to the file descriptor yourself, however, you might find it useful to let the library calculate the padding for
you.

3.11 fh write padded image()

This routine can be used to both image data and preformatted ASCII tables. For image data, the data can be either in
host byte-order or FITS byte-order. ‘data’ is a buffer of ‘size’ bytes which you must allocate first. The library calculates
its own value for ‘typesize’ and ‘size’ based on BITPIX and NAXIS (see fh image bytes()), which must match your
value, or an error will be returned. This, ‘size’ is completely redundant, but required as a sanity check, while ‘typesize’
is critical in controlling byte-swapping.

File pointer is left at the end of the padding after the image data. When building MEF files, this is the right place to
begin the next header unit. If not, just close the file here... and check for errors when calling close()!

The ‘typesize’ parameter affects the byte-order in which ‘data’ is written to the FITS file. For the most common case,
where ‘data’ is a buffer of host-byte-order 8, 16, 32, or 64 bit values, ‘typesize’ should be set to sizeof(char), sizeof(short),
or sizeof(long), or sizeof(double). The library will automatically determine if the data needs to be swapped when
written to FITS-byte-order. This is the recommended way to let byte-swapping happen. If your program has already
taken care of putting ‘data’ in FITS-byte-order, then pass FH TYPESIZE RAW (a value of 0) for ‘typesize’ to force no
byte-swapping. Finally, to force byte-swapping to happen, even on a Sparc or other type of computer where host- and
FITS-byte-order are the same, pass the negative of the sizeof(<datatype>). Note that ‘typesize’ is a number of bytes,
i.e. is equal to —BITPIX—/8.

Note that the -sizeof() options will swap even on architectures such as Sparc and HP-PA where the data is normally
already stored in the correct byte order for FITS files.

Also note that typesize must be either 0, or equal to BITPIX/8 or library will fail and return FH BAD VALUE.

9

Table 6: Choices for ‘typesize’ Parameter

BITPIX typesize= swap by: data written to file is:

8 sizeof(unsigned char) unchanged
16 sizeof(signed short) 2 swapped if needed
32 sizeof(signed long) 4 swapped if needed
-32 sizeof(float) 4 swapped if needed
-64 sizeof(double) 8 swapped if needed
(any) FH TYPESIZE RAW never swapped
16 -sizeof(signed short) 2 always swapped
32 -sizeof(signed long) 4 always swapped
-32 -sizeof(float) 4 always swapped
-64 -sizeof(double) 8 always swapped

3.12 fh read padded image()

See description for fh write padded image(). Instead of writing data in your buffer, this reads the image from the file
and places it in the buffer (which you must still allocate.) After reading image data, padding in the input file is verified,
but not copied to your buffer. (I.e. ‘size’ must still be exactly equal to fh image bytes() or the function will fail.)

Byte-swapping happens according to the table in fh write padded image. Pass the correct size of the data (in bytes) or
FH TYPESIZE RAW (a value of 0) if you want to read raw bytes from the FITS file in order.

3.13 fh copy padded image()

This performs a straight copy from one FITS file to another. Both are expected to be at the start of their image data.
The number of bytes to read and the padding are determined from HeaderUnit’s BITPIX and NAXIS* values (see
fh image bytes()).

This routine does not work on the primary header unit (it lacks image data.) To copy multiple image extensions, each
extension must be copied by doing the following:� read the header from the original file (after fh read() or fh ehu(), this input file is now at the start of image data

for the corresponding extension.)� write (with fh write()) the header to the new file, which should be at the end of the padding from the previous
image extension.� then use fh copy padded image(), passing it the current extension header used in the two steps above, and the
two file descriptors used above.

See the source code to fhtool.c, which splits and joins MEF, for some examples using this call. (But be warned, there’s
a lot of other cruft in fhtool.c.)

3.14 fh rewrite()

Using the same ‘fd’ obtained by fh file(), or passed to fh read(), this call seeks back to the start of the header and
attempts to rewrite it to reflect any changes made by fh remove() or fh set() calls on the HeaderUnit.

fh rewrite() does not take a file descriptor argument. It will fail if there was no previously successful fh file() or fh read()
call from which it can obtain a file descriptor. It will also return delayed failure from any fh set() calls which may have
failure due to incorrect usage or out of memory errors.

10

4 Examining Extensions and Image Data

4.1 fh extensions()

If no EXTEND keyword is found, or if it is not set to T(rue) then 0 is returned. Otherwise the value of the NEXTEND
keyword is returned. Use this to test for a mutli-extension FITS file.

4.2 fh image bytes()

This returns the expected unpadded image size in bytes. It should be called only after valid BITPIX and NAXIS* values
have been set or read from a file. Here is the formula used to obtain the image size in bytes:NAXIS1�NAXIS2� :::�BytesPerP ixel
Where BytesPerP ixel is 1 for BITPIX=8, 2 for BITPIX=16, 4 for BITPIX=+/-32, and 8 for BITPIX=-64.

4.3 fh image blocks()

This returns the following:(fh image bytes() + 2880� 1)=2880
4.4 fh header blocks()

This returns the number of 2880-byte blocks fh write() or fh rewrite() will need for the header.

4.5 fh ehu()

Use this only if you are making a program which loops through all extensions (see the example fhextname.c). In all
other cases, refer to extensions by IMAGEID or EXTNAME using one of the following two functions.

Do not fh destroy() the HeaderUnit returned by the fh ehu() functions. It is destroyed automatically when the corre-
sponding primary header is destroyed.

4.6 fh ehu by imageid()

Returns a HeaderUnit which contains a matching IMAGEID keyword and seeks the file to the start of the data for that
extension.

If no matching IMAGEID is found, 0 is returned.

Do not fh destroy() the HeaderUnit returned by the fh ehu() functions. It is destroyed automatically when the corre-
sponding primary header is destroyed.

4.7 fh ehu by extname()

Returns a HeaderUnit which contains a matching EXTNAME keyword and seeks the file to the start of the data for that
extension.

If no matching EXTNAME is found, 0 is returned.

Do not fh destroy() the HeaderUnit returned by the fh ehu() functions. It is destroyed automatically when the corre-
sponding primary header is destroyed.

11

5 Looking at Keywords

5.1 fh get bool()

Returns FH SUCCESS if ‘name’ is found and contains either T or F (and not as a string, but as a ‘logical’ FITS card.)� If the card contains T, *value will contain FH TRUE.� If the card contains F, *value will contain FH FALSE.

5.2 fh get int()

Returns FH SUCCESS if ‘name’ is found and contains a valid integer. A floating point value (with a decimal point) is
not a valid integer. *value will contain the value as converted by the C strtol() function.

5.3 fh get flt()

Returns FH SUCCESS if ‘name’ is found and contains a valid float (real) value. *value will contain the result of the C
strtod() function.

5.4 fh get str()

Returns FH SUCCESS if ‘name’ is found and contains a FITS string in single quotes (’...’). *value will contain a ’n0’-
terminated list of (up to) the first maxlen characters. (Always pass buffers of (FH MAX STRLEN + 1) characters to be
sure returned strings will not have to be truncated by the library.)

5.5 fh first() and fh next()

For access to each of the raw, 80 (FH CARD SIZE) records in the header, these functions can be used in a loop (see the
“second way” in example fhlist.c).

5.6 fh idx()

This returns the index of the card last returned by fh next().

5.7 fh search()

Use this to see if a keyword exists. A return of FH SUCCESS means the keyword exists. If you pass a non-NULL
pointer in ‘idx’, the current ‘idx’ will be returned in *idx.

5.8 fh show()

Prints the first 79 columns of each card to stdout. Column 80 is replaced by a newline, so the terminal doesn’t have to
have exactly 80 columns to display properly, and the search-forward (’/’ key) of ‘less’ can be used. See the example
fhlist.c.

12

5.9 fh idx before() and fh idx after()

Use these functions to obtain ‘idx’ numbers which would cause a new card to appear just before or after an existing
card. Note that if the “new” card already exists too, it will be replaced and will not be relocated in the header.

Pass the return of this function as the ‘idx’ argument to the fh set*() routines. Alternatively, you can pass FH AUTO or
a fixed value (see the section on ‘idx’ numbers.)

6 Changing Keywords

fh set int(), fh set flt(), fh set str(), fh set bool(), and fh set val() all follow the same logic to change or add a keyword
to a FITS header:

1. If the keyword already exists:� The original position in the header and ‘idx’ assignment are kept. (So the ‘idx’ argument to fh set() is ignored
in this case.)� The new value is substituted.� A new comment is inserted, unless comment is NULL, in which case the old comment is left in tact.

2. If the keyword is not found:� A new card is inserted according to the ‘idx’ number given (at the end of the list if idx == FH AUTO.)� The new value is used.� The new comment is used, or if it is NULL, no comment field is inserted (not even the ’/’ character.)

For fh set com(), each call results in (case 2), a new card being added, unless an matching keyword with exactly the same
‘idx’ number (and not FH AUTO) is found. So, specific COMMENT idx=1001.1 could be set and re-set any number of
times with fh set com(), but if the ‘idx’ numbers were different, or equal to FH AUTO then multiple fh set com() calls
would result in multiple COMMENT cards being added to the header.

All of this is done in memory. Nothing happens to the file until fh rewrite() is called. At that time, if new keywords
were added, the call may fail because of lack of space in the header.

6.1 fh remove()

Remove a card from the list. Upon the following fh rewrite(), the card will disappear from the file, and an extra
reserved COMMENT card will appear at the end to replace it, keeping the header the same size, no matter how many
cards you remove.

6.2 fh set all units()

By default, if fh set() operations are performed on a PHU read from a file, they are not applied to extension units. Call
this function before calling any other fh set* functions on a PHU when you also want the extensions (which you’d get
with fh ehu()) to be changed, otherwise fh set() only applies to the current HeaderUnit.

6.3 fh set com()

‘name’ should be either ”COMMENT” or ”HISTORY” and ‘value’ is the rest of the line (will be truncated at 72 charac-
ters.)

13

6.4 fh set bool()

Set a logical or boolean FITS keyword. A non-zero ‘value’ or FH TRUE is saved as ’T’ and FH FALSE is saved as ’F’.

6.5 fh set int()

Set an integer FITS keyword.

6.6 fh set flt()

Use this to set float (real) values. The value must be of type ‘double’ and will be inserted in the FITS card as a number
with a decimal point, and possibly an exponent (as determined by the %G format instruction to printf). ‘digits’ is the
number of significant digits in the quantity ‘value’. It must be an integer value 1 or greater. Alternatively, ‘digits’ can
be specified as .1, .2, .3,9 to specify up to 9 fixed digits after the decimal point (and used instead of plus a trailing
decimal to keep it a legal FITS floating point keyword. When printing a year, with a century, prec should be 0, or at
least 4 to ensure that the value does not get printed with an exponent by %G.

6.7 fh set str()

Set a string FITS keyword. If string is longer than 18 characters, the start of the comment field will be shifted, and a
comment may get truncated.

6.8 fh set val()

Similar to fh set str(), but assumes that you have already sprintf’d the value into a buffer. Use this to get precise control
over the formatting of the value field.

6.9 fh merge()

Merge source hu into target hu and sort according to the ‘idx’ numbers in both lists. source hu is not modified.

7 Redirecting Error Messages

By default, libfh will print any error and warning messages directly to “stderr.” You do not have to use any of these
functions if that behavior is acceptable.

It is possible to define your own log handlers which the libfh will call with a single string constant argument whenever
it has an error or warning to report. It is also possible to set all three to NULL using the functions below to suppress all
log output.

7.1 fh log warning()

Pass NULL to suppress warnings, or a pointer to your own function which should be called whenever the library
has warning to report. Warnings are used to report illegal characters, values which had to be truncated, or invalid
characters in FITS padding regions.

14

7.2 fh log error()

Pass NULL to suppress library errors, or a pointer to your own function which should be called whenever the library
has an error (typically, and error code is returned in fh result at the same time.) Error strings correspond roughly to
the descriptions of the fh result error codes, but may also contain additional information.

7.3 fh log perror()

The default handler for this is the ANSI C call “perror()”. If you install your own call, it should print the message
passed, but also check the value of errno. This is used when a system call (such as open, close, read, write, fcntl) fails.

8 Including and Linking the Library

There are two components to the library: a header file “fh.h” and the implementation, “fh.c”.

Programs which libfh as part of Pegasus can include the header file like this:

#include "fh/fh.h"

Linking with the library is accomplished by adding -lfh to the $(EXECNAME) line of the Makefile:

$(EXECNAME): $(OBJS) -lfh

The above applies to projects in the CFHT source tree, /cfht/src/...

If you made your own copies if fh.h and fh.c, include just “fh.h” instead of “fh/fh.h” and link fh.c into your program
as just another C file.

9 Recipes for Converting to libfh

9.1 Opening a File

Find the place(s) in the code where a FITS file is opened and closed. For a Pegasus handler based on libff, the old call
to open the file would look something like this:

ff_init(filename);

and replace it with:

HeaderUnit hu = fh_create();

/* Use FH_FILE_RDONLY below, if you only want to read the file. */
if (fh_file(hu, filename, FH_FILE_RDWR) != FH_SUCCESS)

/* ERROR ... */� If the code fopen()’d a file itself, it must be upgraded to use fh file because FILE streams are buffered and will not
work reliably in conjunction with file locking. You MUST use file descriptor I/O instead of streams with this library!

15

� If the code open()’d the file itself and read the headers, both of these steps are replaced by the fh file() call. If you
need to obtain the file descriptor yourself, from your own call to open(), then use fh create() to obtain an empty
header unit, followed by fh read() to read from your own file descriptor instead of the single call to fh file(). In
either case, fh file() / fh read() has taken care of reading all the FITS cards into a table, so remove any old code
that did that.� Your code should only close() the file if you opted to also open() it yourself. In this case, be sure to check the
return code of close()! If there is not enough room to write a file, some filesystems return a delayed error, on close()
instead of on the write().

If fh file() was used instead of open(), fh destroy() will close() the file, but for the same reasons, check the return of
fh destroy() if you opened a file for writing.

The FITS header, and all extension headers are now available by passing “hu” to the other functions of the library.
Note: Since fh file() returns a handle, it is possible to have multiple FITS files open at once.

9.2 Changing Keywords

Calls to the libff routine to set a string:

ff_chng_value(FF_CARDNAME, FITS_STRING, string);

are changed to:

fh_set_str(hu, FH_AUTO, "CARDNAME", string, comment);

The actual ”CARDNAME” and ‘comment’ field can be found by looking inside the “handler.def” template file. After a
handler is converted, and if DetCom is generating the FITS file (i.e., leaving room with fh reserve) then the .def template
is no longer needed.

An upgraded handler still works fine with templates too, though, because it finds the template slots in the FITS file
and uses those before looking for COMMENT reserve space.

ff chng value() calls with FITS REAL, FITS INTEGER, and FITS LOGICAL are easiest to convert to directly to calls to
fh set val(), which allows the calling program to do the sprintf’ing and precisely control the formatting of the value:

double juliandate = ...;
char String[FH_MAX_STRLEN+1];

sprintf(String, "%15.6f", juliandate);
ff_chng_value(FF_MJDOBS, FITS_REAL, String);

becomes:

double juliandate = ...;
char String[FH_MAX_STRLEN+1];

sprintf(String, "%15.6f", juliandate);
fh_set_val(hu, FH_AUTO, "MJD-OBS", String, comment);

(Note how the actual name of the FITS keyword is not always the name of the defined symbol less the FF . You must
check the template and ff/ff.h for the real name.)

See sections on fh set int(), fh set flt(), and fh set bool() for a way to set integer, float, and T/F values using the library’s
internal formatting. This is recommended over fh set val(). The above call could be changed to:

double juliandate = ...;
fh_set_flt(hu, FH_AUTO, "MJD-OBS", juliandate, .6, comment);

16

9.3 “Flushing” Changes to a File

After all calls to fh set *() have been done, make one call to write the changes back to the file. Check for errors here!

if (fh_rewrite(hu) != FH_SUCCESS) rtn = FAIL;
if (fh_destroy(hu) != FH_SUCCESS) rtn = FAIL;
return rtn;

WARNING: Do not combine the two statements above with ’jj’ (short-circuit logic), or simply “return FAIL” on the first
failure because the memory and file locks associated with “hu” may not be properly released!

In Pegasus handlers with libff, this replaces calls to ff flush() and ff free().

9.4 Closing a File

Whether fh file() or fh create() was used, when the HeaderUnit is no longer needed, make a call to:

if (fh_destroy(hu) != FH_SUCCESS) return FAIL;

In Pegasus handlers, this replaces the call to ff free().

10 Examples

10.1 Display any Primary or Extension Header (fhlist.c)

This program will show the FITS header from any file, or any extension within the file (by using a feature of fh file()
which searches for an extension when the filename contains “fitsfile[extname]”.)

This small program is also a good way to test the behavior of fh file().

#include "fh/fh.h"

int
main(int argc, const char* argv[])
{

HeaderUnit hu = fh_create();

if (fh_file(hu, argv[1], FH_FILE_RDONLY) != FH_SUCCESS)
exit(1);

fh_show(hu);
fh_destroy(hu); /* No errors possible, since RDONLY */
exit(0);

}

#include "fh/fh.h"

int
main(int argc, const char* argv[])
{

HeaderUnit hu = fh_create();
const char* card;

17

if (fh_file(hu, argv[1], FH_FILE_RDONLY) != FH_SUCCESS)
exit(1);

for (card = fh_first(hu); card; card = fh_next(hu))
{

printf("%.*s\n", strlen(card)==80?80:79, card);
}

fh_destroy(hu); /* No errors possible, since RDONLY */
exit(0);

}

10.2 Loop through all extensions by EXTNAME (fhextname.c)

When there is a separate FITS file for each amplifier, finding the names of all the “extensions” is as easy as listing all
the files in a subdirectory. Here’s a utility which generates an equivalent list of names for MEF Files. The output from
this program can be used as the arguments to a pipeline program which uses fh file() to open one file or extension each
time it is run. Multiple FITS files may be given on the command line. In this example, the ‘fhextname’ program is used
just as ‘ls’ would have been with basic FITS files:

#!/bin/sh
for i in ‘fhextname *.fits‘
do

reduce "$i"
done

Note that this also works for split files, since ‘fhextname’ just prints the name of the fits file itself, if there are no
extensions. Here is the source code for ‘fhextname’:

#include <stdio.h>
#include <stdlib.h>
#include "fh/fh.h"

int
main(int argc, const char* argv[])
{

HeaderUnit hu, ehu;
char extname[FH_MAX_STRLEN+1];
int i, ext;

for (i = 1; i < argc; i++)
{

hu = fh_create();
if (fh_file(hu, argv[i], FH_FILE_RDONLY) != FH_SUCCESS)

exit(EXIT_FAILURE);

if (fh_extensions(hu) < 1)
{

printf("%s\n", argv[i]); /* No extensions? Print the filename. */
}
else for (ext = 1; ext <= fh_extensions(hu); ext++)
{

if (!(ehu = fh_ehu(hu, ext)) ||
fh_get_str(ehu, "EXTNAME", extname, sizeof(extname)) != FH_SUCCESS)
{

fprintf(stderr, "error: Cannot read EXTNAME from ‘%s’ for extension #%d\n", argv[i], ext);

18

fh_destroy(hu);
exit(EXIT_FAILURE);

}
printf("%s[%s]\n", argv[i], extname);

}
fh_destroy(hu); /* No errors to check, since RDONLY */

}
exit(EXIT_SUCCESS);

}

10.3 Tool to Set any Keyword(s) (fhset.c)

Here is the source code for ‘fhset’, a command line utility which sets arbitrary keywords and comment fields in a FITS
file (and extension units, if it has any.) The following would cause this tool to update/add GAIN (a float value), OBSID
(an integer), CCD (a string) and INHERIT (boolean).

#!/bin/sh
fhset 12345o.fits "GAIN=1.35" "OBSID=12345" "CCD=’Cam corder CCD’" "INHERIT=F"

Here is the source for the fhset.c program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "fh/fh.h"

int
main(int argc, const char* argv[])
{

HeaderUnit hu = fh_create();
int i, exitcode = EXIT_SUCCESS;

if (argc < 2)
{

fprintf(stderr, "usage: fhset <fitsfile> KEYWORD=value [/comment] [KEYWORD=value [/comment] ...]\n");
exit(2);

}

if (fh_file(hu, argv[1], FH_FILE_RDWR) != FH_SUCCESS)
exit(EXIT_FAILURE);

for (i = 2; i < argc; i++)
{

char* arg = strdup(argv[i]);
char* val = strchr(arg, ’=’);
const char* com;

com = 0;
if (!val)
{

fprintf(stderr, "fhset: error: Specify KEYWORD=value (with no spaces)\n");
fh_destroy(hu);
exit(2);

}
*val++ = ’\0’;
if (i + 1 < argc && *argv[i + 1]==’/’)

19

{ com = argv[++i]; com++; } /* Don’t include the ’/’ itself. */
fh_set_val(hu, FH_AUTO, arg, val, com);

}
/*
* Write the changes to the file, and unlock it.
*/

if (fh_rewrite(hu) != FH_SUCCESS) exitcode = EXIT_FAILURE;
if (fh_destroy(hu) != FH_SUCCESS) exitcode = EXIT_FAILURE;
exit(exitcode);

}

10.4 Tool for making Reserve Space (fhreserve.c)

This one still has to be written . . .

Something which locks the entire file and shifts everything without removing and creating a completely new file would
probably work the best over NFS.

For now, we must make sure the DetCom or anything else which creates FITS files is leaving enough reserved cards
for the downstream programs.

10.5 Update a Card with known Keyword

In this example, the keyword WEATHER may or may not exist.� If it exists, the keyword’s value and comment fields are changed.� If it doesn’t exist, it is added at the end of the FITS header.� If there is no room, the program fails.

#include <stdio.h>
#include <stdlib.h>
#include "fh/fh.h"

int
main(int argc, const char* argv[])
{

HeaderUnit hu = fh_create();
int exitcode = EXIT_SUCCESS;

/*
* This program does not like to read from pipes. Check explicitly.
*/

if (!argv[1] || !strcmp(argv[1], "-"))
{

fprintf(stderr, "error: Updating FITS cards requires an input file.\n")
exit(EXIT_FAILURE);

}
if (fh_file(hu, argv[1], FH_FILE_RDWR) != FH_SUCCESS)

exit(EXIT_FAILURE);
fh_set_str(hu, FH_AUTO, "WEATHER", "Excellent", "This card is bogus");
if (fh_rewrite(hu) != FH_SUCCESS) exitcode = EXIT_FAILURE;
/* File is now changed (and automatically unlocked) */
if (fh_destroy(hu) != FH_SUCCESS) exitcode = EXIT_FAILURE;
exit(exitcode);

}

20

10.6 Add set of COMMENT cards to already open file

This example is not a complete program, but a function within a larger program which has its own way of opening a
file descriptor (and thus, does not want to use fh file.)

PASSFAIL
add_some_comments(int fd)
{

HeaderUnit hu = fh_create();
PASSFAIL rtn = PASS;

if (fh_read(hu, fd, FH_AUTO) != FH_SUCCESS) rtn = FAIL;
else
{

fh_set_com(hu, FH_AUTO, "COMMENT", "Here’s the 1st of 3 lines");
fh_set_com(hu, FH_AUTO, "COMMENT", "which will be added");
fh_set_com(hu, FH_AUTO, "COMMENT", "to the end of the header");
if (fh_rewrite(hu) != FH_SUCCESS) rtn = FAIL;

}

/* Don’t forget to free memory, even on failure, */
/* especially since this unlocks the file too. */
if (fh_destroy(hu) != FH_SUCCESS) rtn = FAIL;
return rtn;

}

10.7 Build a FITS File from Scratch

Here a complete FITS file is built from scratch, using routines in libfh. It demonstrates several other things which the
examples above do not:� Writing a FITS file to a pipe (STDOUT). (The program would also work if ‘fd’ was a network socket or a real file.)� Use of fh reserve() to make room for other programs which will add cards.� Use of ‘idx’ numbers (although it would work just as well using FH AUTO for all the calls in this example.)

Source code follows:

21

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "fh/fh.h"

int
main(int argc, const char* argv[])
{

HeaderUnit hu = fh_create();
time_t date = time(0);
short* data;
int exitcode = EXIT_SUCCESS;
int fd = STDOUT_FILENO; /* By default, write to stdout */
double etime = 10.0; /* Normally these values might */
int w = 2048, h = 4096; /* not be hardcoded like this */

data = malloc(sizeof(short)*w*h);

fh_reserve(hu, 50); /* Reserve space for 50 cards (TCS, Elixir?, etc.) */
fh_set_bool(hu, FH_AUTO, "SIMPLE", 1, "Standard FITS");
fh_set_int(hu, FH_AUTO, "BITPIX", 16,"16-bit data");
fh_set_int(hu, FH_AUTO, "NAXIS", 2, "Number of axes");
fh_set_int(hu, FH_AUTO, "NAXIS1", w, "Number of pixel columns");
fh_set_int(hu, FH_AUTO, "NAXIS2", h, "Number of pixel rows");
fh_set_int(hu, FH_AUTO, "PCOUNT", 0, "No ’random’ parameters");
fh_set_int(hu, FH_AUTO, "GCOUNT", 1, "Only one group");

strftime(str, sizeof(str)-1, "%Y-%m-%dT%T", gmtime(&date));
fh_set_str(hu, 104, "DATE", str, "UTC Date of file creation");
strftime(str, sizeof(str)-1, "%a %b %d %H:%M:%S %Z %Y", localtime(&date));
fh_set_str(hu, 104.1,"HSTTIME", str, "Local time in Hawaii");
fh_set_str(hu, 105, "ORIGIN", "CFHT", "Canada-France-Hawaii Telescope");
fh_set_flt(hu, 141., "BZERO",0.0, 6,"Zero factor");
fh_set_flt(hu, 142., "BSCALE",1.0, 2, "Scale factor");
fh_set_flt(hu, 150, "DATAMIN", datamin, 6, "Minimum value of the data");
fh_set_flt(hu, 151, "DATAMAX", datamax, 6, "Maximum value of the data");
fh_set_flt(hu, 160, "SATURATE", 4016.0, 6, "Saturation value");
fh_set_flt(hu, 220, "EXPTIME", etime, 5, "Integration time (seconds)");
sprintf(str, "%d %d", binmode + 1, binmode + 1);
fh_set_str(hu, 230, "CCDSUM", str, "Binning factors");
fh_set_com(hu, 1400.0, "COMMENT", "");
fh_set_com(hu, 1400.1, "COMMENT", " Camera status record:");
fh_set_com(hu, 1400.2, "COMMENT", "");
if (camera_status==0)

fh_set_str(hu, 1410, "DETSTAT", "ok", "(camera_status is 0)");
else

fh_set_int(hu, 1411, "DETSTAT", sbstat.imaging_ccd_status, "error!");
fh_set_str(hu, 1601,"DETECTOR", info.camera_name, info.serial_number);
if (fh_write(hu, fd) != FH_SUCCESS ||

fh_write_padded_image(hu, fd, data, w*h*sizeof(unsigned short)) != FH_SUCCESS)
exitcode = EXIT_FAILURE;

if (fh_destroy(hu) != FH_SUCCESS) exitcode = EXIT_FAILURE;
exit(exitcode);

}

22

10.8 Build an MEF File from Scratch

The fh ehu*() functions are only used to access extensions within an already existing MEF. The are not used when
building an MEF File for the first time. This task must be done by writing the appropriate interleaved header units and
image data manually.

The following example constructs a very minimal MEF File with only two extensions. For a more comprehensive
example, see the source code of DetCom, /cfht/src/medusa/detcom/detcom/det data.c.

#include <stdio.h>
#include <stdlib.h>
#include "fh/fh.h"

#define NEXTEND 2

int
main(int argc, const char* argv[])
{

short dummy_data[3 * 2] = { 1, 2, 3, 4, 5, 6 };
HeaderUnit phu, ehu;
int i, fd = STDOUT_FILENO;

phu = fh_create();
fh_set_bool(phu, FH_AUTO, "SIMPLE", 1, "Standard FITS");
fh_set_int(phu, FH_AUTO, "BITPIX", 16, "Bits per pixel (not appl. to PHU)");
fh_set_int(phu, FH_AUTO, "NAXIS", 0, "No image data with primary header");
fh_set_bool(phu, FH_AUTO, "EXTEND", 1, "File contains extensions");
fh_set_int(phu, FH_AUTO, "NEXTEND", NEXTEND, "Number of extensions");
fh_write(phu, fd);
fh_destroy(phu);

for (i = 0; i < NEXTEND; i++)
{

char str[FH_MAX_STRLEN+1];

sprintf(str, "im%02d", i);
ehu = fh_create();
fh_set_str(ehu, FH_AUTO, "XTENSION", "IMAGE", "Image extension");
fh_set_int(ehu, FH_AUTO, "BITPIX", 16, "Bits per pixel");
fh_set_int(ehu, FH_AUTO, "NAXIS", 2, "Number of axes");
fh_set_int(ehu, FH_AUTO, "NAXIS1", 3, "Number of pixel columns");
fh_set_int(ehu, FH_AUTO, "NAXIS2", 2, "Number of pixel rows");
fh_set_int(ehu, FH_AUTO, "PCOUNT", 0, "No ’random’ parameters");
fh_set_int(ehu, FH_AUTO, "GCOUNT", 1, "Only one group");
fh_set_str(ehu, FH_AUTO, "EXTNAME", str, "Extension name");
fh_write(ehu, fd);
fh_write_padded_image(ehu, fd, dummy_data, sizeof(dummy_data));
fh_destroy(ehu);

}
}

23

